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Preface

The term machine learning refers to the automated detection of meaningful
patterns in data. In the past couple of decades it has become a common tool in
almost any task that requires information extraction from large data sets. We are
surrounded by a machine learning based technology: search engines learn how
to bring us the best results (while placing profitable ads), anti-spam software
learns to filter our email messages, and credit card transactions are secured by
a software that learns how to detect frauds. Digital cameras learn to detect
faces and intelligent personal assistance applications on smart-phones learn to
recognize voice commands. Cars are equipped with accident prevention systems
that are built using machine learning algorithms. Machine learning is also widely
used in scientific applications such as bioinformatics, medicine, and astronomy.
One common feature of all of these applications is that, in contrast to more
traditional uses of computers, in these cases, due to the complexity of the patterns
that need to be detected, a human programmer cannot provide an explicit, fine-
detailed specification of how such tasks should be executed. Taking example from
intelligent beings, many of our skills are acquired or refined through learning from
our experience (rather than following explicit instructions given to us). Machine
learning tools are concerned with endowing programs with the ability to “learn”
and adapt.
The first goal of this book is to provide a rigorous, yet easy to follow, intro-
duction to the main concepts underlying machine learning: What is learning?
How can a machine learn? How do we quantify the resources needed to learn a
given concept? Is learning always possible? Can we know if the learning process
succeeded or failed?
The second goal of this book is to present several key machine learning algo-
rithms. We chose to present algorithms that on one hand are successfully used
in practice and on the other hand give a wide spectrum of different learning
techniques. Additionally, we pay specific attention to algorithms appropriate for
large scale learning (a.k.a. “Big Data”), since in recent years, our world has be-
come increasingly “digitized” and the amount of data available for learning is
dramatically increasing. As a result, in many applications data is plentiful and
computation time is the main bottleneck. We therefore explicitly quantify both
the amount of data and the amount of computation time needed to learn a given
concept.

The book is divided into four parts. The first part aims at giving an initial
rigorous answer to the fundamental questions of learning. We describe a gen-
eralization of Valiant’s Probably Approximately Correct (PAC) learning model,

which is a first solid answer to the question “what is learning?”. We describe
the Empirical Risk Minimization (ERM), Structural Risk Minimization (SRM),
and Minimum Description Length (MDL) learning rules, which shows “how can
a machine learn”. We quantify the amount of data needed for learning using
the ERM, SRM, and MDL rules and show how learning might fail by deriving
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1.1

Intro duction

The subject of this book is automated learning, or, as we will more often call it,
Machine Learning (ML). That is, we wish to program computers so that they can
“learn” from input available to them. Roughly speaking, learning is the process of
converting experience into expertise or knowledge. The input to a learning
algorithm is training data, representing experience, and the output is some
expertise, which usually takes the form of another computer program that can
perform some task. Seeking a formal-mathematical understanding of this
concept, we’ll have to be more explicit about what we mean by each of the
involved terms: What is the training data our programs will access? How can the
process of learning be automated? How can we evaluate the success of such a
process (namely, the quality of the output of a learning program)?

What Is Learning?

Let us begin by considering a couple of examples from naturally occurring ani-
mal learning. Some of the most fundamental issues in ML arise already in that
context, which we are all familiar with.

Bait Shyness — Rats Learning to Avoid Poisonous Baits: When rats encounter
food items with novel look or smell, they will first eat very small amounts, and
subsequent feeding will depend on the flavor of the food and its physiological
effect. If the food produces an ill effect, the novel food will often be associated
with the illness, and subsequently, the rats will not eat it. Clearly, there is a
learning mechanism in play here — the animal used past experience with some
food to acquire expertise in detecting the safety of this food. If past experience
with the food was negatively labeled, the animal predicts that it will also have
a negative effect when encountered in the future.

Inspired by the preceding example of successful learning, let us demonstrate a
typical machine learning task. Suppose we would like to program a machine that
learns how to filter spam e-mails. A naive solution would be seemingly similar to

the way rats learn how to avoid poisonous baits. The machine will simply
memorize all previous e-mails that had been labeled as spam e-mails by the
human user. When a new e-mail arrives, the machine will search for it in the set
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Published 2014 by Cambridge University Press.
Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachinelLearning


http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

20

Intro duction

of previous spam e-mails. If it matches one of them, it will be trashed. Otherwise,
it will be moved to the user’s inbox folder.

While the preceding “learning by memorization” approach is sometimes use-

ful, it lacks an important aspect of learning systems — the ability to label unseen
e-mail messages. A successful learner should be able to progress from individual
examples to broader generalization. This is also referred to as inductive reasoning
or inductive inference. In the bait shyness example presented previously, after
the rats encounter an example of a certain type of food, they apply their attitude
toward it on new, unseen examples of food of similar smell and taste. To achieve
generalization in the spam filtering task, the learner can scan the previously seen
e-mails, and extract a set of words whose appearance in an e-mail message is
indicative of spam. Then, when a new e-mail arrives, the machine can check
whether one of the suspicious words appears in it, and predict its label accord-
ingly. Such a system would potentially be able correctly to predict the label of
unseen e-mails.

However, inductive reasoning might lead us to false conclusions. To illustrate
this, let us consider again an example from animal learning.

Pigeon Superstition: In an experiment performed by the psychologist B. F. Skinner,

he placed a bunch of hungry pigeons in a cage. An automatic mechanism had
been attached to the cage, delivering food to the pigeons at regular intervals

with no reference whatsoever to the birds’ behavior. The hungry pigeons went
around the cage, and when food was first delivered, it found each pigeon engaged
in some activity (pecking, turning the head, etc.). The arrival of food reinforced
each bird’s specific action, and consequently, each bird tended to spend some
more time doing that very same action. That, in turn, increased the chance that
the next random food delivery would find each bird engaged in that activity

again. What results is a chain of events that reinforces the pigeons’ association

of the delivery of the food with whatever chance actions they had been perform-
ing when it was first delivered. They subsequently continue to perform these
same actions diligently.1

What distinguishes learning mechanisms that result in superstition from useful
learning? This question is crucial to the development of automated learners.
While human learners can rely on common sense to filter out random meaningless
learning conclusions, once we export the task of learning to a machine, we must
provide well defined crisp principles that will protect the program from reaching
senseless or useless conclusions. The development of such principles is a central
goal of the theory of machine learning,

What, then, made the rats’ learning more successful than that of the pigeons?

As a first step toward answering this question, let us have a closer look at the

bait shyness phenomenon in rats.

Bait Shyness revisited - rats fail to acquire conditioning between food and

electric shock or between sound and nausea: The bait shyness mechanism in

1 See: http://psychclassics.yorku.ca/Skinner/Pigeon



1.2

1.2 When.DoWe Need-Machine.Learning? 21

rats turns out to be more complex than what one may expect. In experiments
carried out by Garcia (Garcia & Koelling 1996), it was demonstrated that if the
unpleasant stimulus that follows food consumption is replaced by, say, electrical
shock (rather than nausea), then no conditioning occurs. Even after repeated
trials in which the consumption of some food is followed by the administration of
unpleasant electrical shock, the rats do not tend to avoid that food. Similar failure
of conditioning occurs when the characteristic of the food that implies nausea
(such as taste or smell) is replaced by a vocal signal. The rats seem to have some
“built in” prior knowledge telling them that, while temporal correlation between
food and nausea can be causal, it is unlikely that there would be a causal
relationship between food consumption and electrical shocks or between sounds
and nausea.
We conclude that one distinguishing feature between the bait shyness learning
and the pigeon superstition is the incorporation of prior knowledge that biases the
learning mechanism. This is also referred to as inductive bias. The pigeons in the
experiment are willing to adopt any explanation for the occurrence of food.
However, the rats “know” that food cannot cause an electric shock and that the
co-occurrence of noise with some food is not likely to affect the nutritional value
of that food. The rats’ learning process is biased toward detecting some kind of
patterns while ignoring other temporal correlations between events.
It turns out that the incorporation of prior knowledge, biasing the learning
process, is inevitable for the success of learning algorithms (this is formally stated
and proved as the “No-Free-Lunch theorem” in Chapter 5). The development of
tools for expressing domain expertise, translating it into a learning bias, and
quantifying the effect of such a bias on the success of learning is a central theme
of the theory of machine learning. Roughly speaking, the stronger the prior
knowledge (or prior assumptions) that one starts the learning process with, the
easier it is to learn from further examples. However, the stronger these prior
assumptions are, the less flexible the learning is — it is bound, a priori, by the
commitment to these assumptions. We shall discuss these issues explicitly in
Chapter 5.

When Do We Need Machine Learning?

When do we need machine learning rather than directly program our computers
to carry out the task at hand? Two aspects of a given problem may call for the use
of programs that learn and improve on the basis of their “experience”: the
problem’s complexity and the need for adaptivity.

Tasks That Are Too Complex to Program.
. Tasks Performed by Animals/Humans: There are numerous tasks that

we human beings perform routinely, yet our introspection concern-
ing how we do them is not sufficiently elaborate to extract a well
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defined program. Examples of such tasks include driving, speech
recognition, and image understanding. In all of these tasks, state
of the art machine learning programs, programs that “learn from
their experience,” achieve quite satisfactory results, once exposed
to sufficiently many training examples.

« Tasks beyond Human Capabilities: Another wide family of tasks that
benefit from machine learning techniques are related to the analy-
sis of very large and complex data sets: astronomical data, turning

medical archives into medical knowledge, weather prediction, anal-
ysis of genomic data, Web search engines, and electronic commerce.
With more and more available digitally recorded data, it becomes
obvious that there are treasures of meaningful information buried
in data archives that are way too large and too complex for humans
to make sense of. Learning to detect meaningful patterns in large
and complex data sets is a promising domain in which the combi-
nation of programs that learn with the almost unlimited memory
capacity and ever increasing processing speed of computers opens
up new horizons.

Adaptivity. One limiting feature of programmed tools is their rigidity — once
the program has been written down and installed, it stays unchanged.
However, many tasks change over time or from one user to another.
Machine learning tools — programs whose behavior adapts to their input
data — offer a solution to such issues; they are, by nature, adaptive
to changes in the environment they interact with. Typical successful
applications of machine learning to such problems include programs that
decode handwritten text, where a fixed program can adapt to variations
between the handwriting of different users; spam detection programs,
adapting automatically to changes in the nature of spam e-mails; and
speech recognition programs.

1.3 Types of Learning

Learning is, of course, a very wide domain. Consequently, the field of machine
learning has branched into several subfields dealing with different types of learn-
ing tasks. We give a rough taxonomy of learning paradigms, aiming to provide
some perspective of where the content of this book sits within the wide field of
machine learning.

We describe four parameters along which learning paradigms can be classified.

Supervised versus Unsupervised Since learning involves an interaction be-
tween the learner and the environment, one can divide learning tasks
according to the nature of that interaction. The first distinction to note
is the difference between supervised and unsupervised learning. As an
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illustrative example, consider the task of learning to detect spam e-mail
versus the task of anomaly detection. For the spam detection task, we
consider a setting in which the learner receives training e-mails for which
the label spam/not-spam is provided. On the basis of such training the
learner should figure out a rule for labeling a newly arriving e-mail mes-
sage. In contrast, for the task of anomaly detection, all the learner gets
as training is a large body of e-mail messages (with no labels) and the
learner’s task is to detect “unusual” messages.

More abstractly, viewing learning as a process of “using experience
to gain expertise,” supervised learning describes a scenario in which the
“experience,” a training example, contains significant information (say,
the spam/not-spam labels) that is missing in the unseen “test examples”
to which the learned expertise is to be applied. In this setting, the ac-
quired expertise is aimed to predict that missing information for the test
data. In such cases, we can think of the environment as a teacher that
“supervises” the learner by providing the extra information (labels). In
unsupervised learning, however, there is no distinction between training
and test data. The learner processes input data with the goal of coming
up with some summary, or compressed version of that data. Clustering a
data set into subsets of similar objets is a typical example of such a task.

There is also an intermediate learning setting in which, while the training
examples contain more information than the test examples, the learner
is required to predict even more information for the test exam- ples. For

example, one may try to learn a value function that describes for each
setting of a chess board the degree by which White’s position is bet- ter
than the Black’s. Yet, the only information available to the learner at
training time is positions that occurred throughout actual chess games,
labeled by who eventually won that game. Such learning frameworks are
mainly investigated under the title of reinforcement learning.
Learning paradigms can vary by the role
Active \f)elargtac% B\é %QF\/ éeﬁrenerrhgvr% distinguish between “active” and “passive”
earners. An activealearner interacts with the environment at training
time, say, by posing queries or performing experiments, while a passive
learner only observes the information provided by the environment (or
the teacher) without influencing or directing it. Note that the learner of a
spam filter is usually passive — waiting for users to mark the e-mails
com- ing to them. In an active setting, one could imagine asking users to
label specific e-mails chosen by the learner, or even composed by the
learner, to enhance its understanding of what spam is.
When one thinks about human learning, of a
baby at home or a student at school, the process often involves a helpful

teacher, who is trying to feed the learner with the information most use-
Helpfulness of the Teacher
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ful for achieving the learning goal. In contrast, when a scientist learns
about nature, the environment, playing the role of the teacher, can be
best thought of as passive — apples drop, stars shine, and the rain falls
without regard to the needs of the learner. We model such learning sce-
narios by postulating that the training data (or the learner’s experience)
is generated by some random process. This is the basic building block in
the branch of “statistical learning.” Finally, learning also occurs when
the learner’s input is generated by an adversarial “teacher.” This may be
the case in the spam filtering example (if the spammer makes an effort
to mislead the spam filtering designer) or in learning to detect fraud.
One also uses an adversarial teacher model as a worst-case scenario,
when no milder setup can be safely assumed. If you can learn against an
adversarial teacher, you are guaranteed to succeed interacting any odd
teacher.
Online versus Batch Learning Protocol The last parameter we mention is
the distinction between situations in which the learner has to respond
online, throughout the learning process, and settings in which the learner
has to engage the acquired expertise only after having a chance to process
large amounts of data. For example, a stockbroker has to make daily
decisions, based on the experience collected so far. He may become an
expert over time, but might have made costly mistakes in the process. In
contrast, in many data mining settings, the learner — the data miner —
has large amounts of training data to play with before having to output
conclusions.

In this book we shall discuss only a subset of the possible learning paradigms.
Our main focus is on supervised statistical batch learning with a passive learner
(for example, trying to learn how to generate patients’ prognoses, based on large
archives of records of patients that were independently collected and are already
labeled by the fate of the recorded patients). We shall also briefly discuss online
learning and batch unsupervised learning (in particular, clustering).

1.4 Relations to Other Fields

As an interdisciplinary field, machine learning shares common threads with the
mathematical fields of statistics, information theory, game theory, and optimiza-
tion. It is naturally a subfield of computer science, as our goal is to program
machines so that they will learn. In a sense, machine learning can be viewed as a
branch of AI (Artificial Intelligence), since, after all, the ability to turn expe- rience
into expertise or to detect meaningful patterns in complex sensory data is a
cornerstone of human (and animal) intelligence. However, one should note that,
in contrast with traditional AI, machine learning is not trying to build automated
imitation of intelligent behavior, but rather to use the strengths and
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special abilities of computers to complement human intelligence, often perform-
ing tasks that fall way beyond human capabilities. For example, the ability to scan
and process huge databases allows machine learning programs to detect
patterns that are outside the scope of human perception.

The component of experience, or training, in machine learning often refers
to data that is randomly generated. The task of the learner is to process such
randomly generated examples toward drawing conclusions that hold for the en-
vironment from which these examples are picked. This description of machine
learning highlights its close relationship with statistics. Indeed there is a lot in
common between the two disciplines, in terms of both the goals and techniques
used. There are, however, a few significant differences of emphasis; if a doctor
comes up with the hypothesis that there is a correlation between smoking and
heart disease, it is the statistician’s role to view samples of patients and check the
validity of that hypothesis (this is the common statistical task of hypothe- sis
testing). In contrast, machine learning aims to use the data gathered from
samples of patients to come up with a description of the causes of heart disease.
The hope is that automated techniques may be able to figure out meaningful
patterns (or hypotheses) that may have been missed by the human observer.

In contrast with traditional statistics, in machine learning in general, and
in this book in particular, algorithmic considerations play a major role. Ma- chine
learning is about the execution of learning by computers; hence algorith- mic
issues are pivotal. We develop algorithms to perform the learning tasks and are
concerned with their computational efficiency. Another difference is that while
statistics is often interested in asymptotic behavior (like the convergence of
sample-based statistical estimates as the sample sizes grow to infinity), the
theory of machine learning focuses on finite sample bounds. Namely, given the
size of available samples, machine learning theory aims to figure out the degree
of accuracy that a learner can expect on the basis of such samples.

There are further differences between these two disciplines, of which we shall
mention only one more here. While in statistics it is common to work under the
assumption of certain presubscribed data models (such as assuming the normal-
ity of data-generating distributions, or the linearity of functional dependencies), in
machine learning the emphasis is on working under a “distribution-free” set- ting,
where the learner assumes as little as possible about the nature of the data
distribution and allows the learning algorithm to figure out which models best
approximate the data-generating process. A precise discussion of this issue
requires some technical preliminaries, and we will come back to it later in the
book, and in particular in Chapter 5.

How to Read This Book

The first part of the book provides the basic theoretical principles that underlie
machine learning (ML). In a sense, this is the foundation upon which the rest
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of the book is built. This part could serve as a basis for a minicourse on the
theoretical foundations of ML.
The second part of the book introduces the most commonly used algorithmic
approaches to supervised machine learning. A subset of these chapters may also
be used for introducing machine learning in a general Al course to computer
science, Math, or engineering students.
The third part of the book extends the scope of discussion from statistical
classification to other learning models. It covers online learning, unsupervised
learning, dimensionality reduction, generative models, and feature learning.
The fourth part of the book, Advanced Theory, is geared toward readers who have
interest in research and provides the more technical mathematical tech- niques
that serve to analyze and drive forward the field of theoretical machine
learning.
The Appendixes provide some technical tools used in the book. In particular,
we list basic results from measure concentration and linear algebra.
A few sections are marked by an asterisk, which means they are addressed to
more advanced students. Each chapter is concluded with a list of exercises. A
solution manual is provided in the course Web site.

Possible Course Plans Based on This Book
A 14 Week Introduction Course for Graduate Students:

1. Chapters 2—4.

2. Chapter 9 (without the VC calculation).

3. Chapters 5-6 (without proofs).

4. Chapter 10.

. Chapters 7, 11 (without proofs).

. Chapters 12, 13 (with some of the easier proofs).
. Chapter 14 (with some of the easier proofs).
.Chapter 15.

. Chapter 16.

10. Chapter 18.

11. Chapter 22.

12. Chapter 23 (without proofs for compressed sensing).
13. Chapter 24.

14. Chapter 25.

o1

O 00 3O

A 14 Week Advanced Course for Graduate Students:

1. Chapters 26, 27.
2. (continued)

3. Chapters 6, 28.
4. Chapter 7.

5. Chapter 31.
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6. Chapter 30.
7. Chapters 12, 13.

8. Chapter 14,

9. Chapter 8.

10. Chapter 17.

11. Chapter 29.

12. Chapter 19.

13. Chapter 20.

14. Chapter 21.

Notation

Most of the notation we use throughout the book is either standard or defined on
the spot. In this section we describe our main conventions and provide a table
summarizing our notation (Table 1.1). The reader is encouraged to skip this
section and return to it if during the reading of the book some notation is unclear.
We denote scalars and abstract objects with lowercase letters (e.g. x and A).
Often, we would like to emphasize that some object is a vector and then we use
boldface letters (e.g. x and A). The ith element of a vector x is denoted
by xi. We use uppercase letters to denote matrices, sets, and sequences. The
meaning should be clear from the context. As we will see momentarily, the input
of a learning algorithm is a sequence of training examples. We denote by zan
abstract example and by S=2z1, ..., zm a sequence of m examples. Historically,
S is often referred to as a training set; however, we will always assume that S is
a sequence rather than a set. A sequence of m vectors is denoted by x1, . .., xm.

The ith element of xt is denoted by xt,i.
Throughout the book, we make use of basic notions from probability. We

denote by o )
D a distribution over some set,2 for example, Z. We use the notation

z
D to denote that z is sampled according to D. Given a random variable
f:z
- R, its expected value is denoted by Ez  D[f(z)]. We sometimes use the
shorthand E[f] when the dependence on z is clear from the context. For f: Z
N

{true,false} we also use Pz D[f(z)] to denote D({z: f(z) = true}). In the

next chapter we will also introduce the notation Dm to denote the probability

over Zm induced by sampling (z1,...,zm) where each point zi is sampled from
D independently of the other points.

In general, we have made an effort to avoid asymptotic notation. However, we
occasionally use it to clarify the main results. In particular, givenf: R
%‘iﬂ’@ﬁ%@%ﬁ@%%?@sﬂqe o-algebra of subsets of Z.

The user who is not-faRiligyavitfritees s (H) 46 there Ssistheday € Rrosechnthetnforisl|
ﬁg%@%rﬂg%f%@al measurability definitions and assumptions.

< ag(x). We write f = o(g) if for every o > 0 there exists

R+
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Table 1.1 Summary of notation

symbol meaning
R the set of real numbers
Rd the set of d-dimensional vectors over R
R+ the set of non-negative real numbers
N 3 the set of natural numbers
0, 0,0, 0" asymptotic notation (see text)
Lgoolean expression)  INdicator function (equals 1 if expression is true and 0 o.w.)
(a] =max
[n] {0, a}
Y the set
Xi, Vi, Wi El,...,n}(fOrHEN)
co tors
w X the
% v 11 Slumn)veci=
” or Vthelementofavectord
Rd, k Yi=dxivi(inn ‘e rproduct)= {x,x> (the2" normofx)=di=1|xi|(thelnormofx)=maxi|xi|(th
ﬂ the number of nonzero elements of x
ifj ad
AX> x k matrix over R
1o xm the transpose of A
gi,j the (i, j) element of A
W), - (T thed
., xdmatrixAs.t.A=(whereRdi,jxixjx E)
t a sequence of m vectors
X the jth element of the ith vector in the sequence
; the values of a vector w during an iterative algorithm
H the ith element of the vector w(t)
. ZHRx - instances domain (a set)
D. labels domain (a set)
) examples domain (a set)
> D hypothesis class (a set)
loss function
2 :@121 e ZM Qciistribution over some set (usually over Z or over
P,E the probability of a set A
P [7)] € Z according to D
Efz sampling z according to
NPE Q)] D
fu)x a sequence of m examples
O x sampling S = z1,...,zm i.i.d. according to
ﬁ{_)() W probability and expectation of a random variable
%v%('w) D({z : f(z) = true}) for f: Z » {true, false}
WS expectation of the random variable f: Z
- R
é@é Gaussian distribution with expectation p and covariance C
maxx f x mﬁéi&rivative of afunctionf:R
€CO the second derivative of a function f: R
3rgm|n A —Ratx
argmax =%V the partial derivative of a function f : Rd '
X e - Ratww.r.t. wi
log the gradient of a function f : Rd
—-Ratw
the differential set of a function f : Rd
—-Ratw
=min
{f(x) : x € C} (minimal value of f over C)
=max
{f(x) : x € C} (maximal value of f over C)
the set

{x € C:f(x) = minzEC f(2)}
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X0 such that for all x > xO we have f(x) < ag(x). We write f = Q(g) if there

exist x0,o

€ R+ such that for all x > xO we have f(x) = ag(x). The notation
f = w(g) is defined analogously. The notation f = ©(g) means that f = O(g)

and g = O(f). Finally, the notation f = O~ (g) means that there exists k

such that f(x) = 0(g(x) logk(g(x))).
Tbe 'ywner product between vect

€ N

Vyorsxandwisdenoted ' byx,w.Wheneverwedonotspecifythevectorspaceweassumethatitisthed-dimensional Eucl

Y 5 2normwhenitisclearfroml/pthecontext.Wealsouseotherpnorms,||w||=(||ppiwi),andinparticular||w|| 1=i|wilan
{f(x) : x € C}. To be mathematically more precise, we should use infx&C f(x)

whenever the minimum is not achievable. However, in the context of this book

the distinction between infimum and minimum is often of little interest. Hence,

to simplify the presentation, we sometimes use the min notation even when inf

is more adequate. An analogous remark applies to max versus sup.
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2.1

A Gentle Start

Let us begin our mathematical analysis by showing how successful learning can
be achieved in a relatively simplified setting. Imagine you have just arrived in
some small Pacific island. You soon find out that papayas are a significant
ingredient in the local diet. However, you have never before tasted papayas. You
have to learn how to predict whether a papaya you see in the market is tasty or
not. First, you need to decide which features of a papaya your prediction should
be based on. On the basis of your previous experience with other fruits, you
decide to use two features: the papaya’s color, ranging from dark green, through
orange and red to dark brown, and the papaya’s softness, ranging from rock hard
to mushy. Your input for figuring out your prediction rule is a sample of papayas
that you have examined for color and softness and then tasted and found out
whether they were tasty or not. Let us analyze this task as a demonstration of the
considerations involved in learning problems.

Our first step is to describe a formal model aimed to capture such learning
tasks.

A Formal Model - The Statistical Learning Framework

. Thelearner'sinput: Inthe basic statistical learning setting, the learner has
access to the following:
AnRRRAH) &t
X. This is the set of objects that we
may wish to label. For example, in the papaya learning problem men-
tioned before, the domain set will be the set of all papayas. Usually,
these domain points will be represented by a vector of features (like
the papaya’s color and softness). We also refer to domain points as
instances and to
X as instance space.
— Label set: For our current discussion, we will restrict the label set to

be a two-element set, usually {0.1} or {-1,+1}. Let Y denote our
set of possible labels. For our papayas example, let

Y be {0, 1}, where
1 represents being tasty and O stands for being not-tasty.

—Training data: S = ((x1, y1) . .. (xm, ym)) is a finite sequence of pairs in
Understanding ,%acp(mt@gggﬁﬂ ﬂgsequence of labeled domain points. This is the input

he learner haéO 8% LUV EOTKE S el 87 pApAV A tRat RAVE been
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tasted and their color, softness, and tastiness). Such labeled examples
are often called training examples. We sometimes also referto Sas a
training set.1
. Thelearner's output: The learneris requested to output a prediction rule,

X =Y. This function is also called a predictor, a hypothesis, or a clas-
sifier. The predictor can be used to predict the label of new domain points.
In our papayas example, it is a rule that our learner will employ to predict
whether future papayas he examines in the farmers’ market are going to
be tasty or not. We use the notation A(S) to denote the hypothesis that a
learning algorithm, A, returns upon receiving the training sequence S.

. Asimple data-generation model we now explain how the training data is
generated. First, we assume that the instances (the papayas we encounter)
are generated by some probability distribution (in this case, representing
the environment). Let us denote that probability distribution over

Xby

D. It is important to note that we do not assume that the learner knows
anything about this distribution. For the type of learning tasks we discuss,
this could be any arbitrary probability distribution. As to the labels, in the
current discussion we assume that there is some “correct” labeling function,
f:

X =Y, and that yi = f(xi) for all i. This assumption will be relaxed in
the next chapter. The labeling function is unknown to the learner. In fact,
this is just what the learner is trying to figure out. In summary, each pair

in the training data S is generated by first sampling a point xi according
- Megguresofsuccess:
and then labeling it by f.

We define the error of a classifier to be the probability
that it does not predict the correct label on a random data point generated
by the aforementioned underlying distribution. That is, the error of his
the probability to draw a random instance x, according to the distribution
D, such that h(x) does not equal f(x).

Formally, given a domain subset,2 A C X, the probability distribution,

D, assigns a number, D(A), which determines how likely it is to observe a

POINtX = A In many cases, we refer to A as an event and express it using

afunctionT:
X ={0,1}, namely, A = {x € X:11(x) = 1}. In that case,
we also use the notation Px
D[mt(x)] to express D(A).
We define the error of a prediction rule, h :

X-Y,tobe
def def

cwice BB S G BB B v of i 7P
S RN S TP SR 9 s BRRAETT B Pah Ay ErSSIAE

X, ovePXAIOPE X Hefindtioé (i formaly. ETHE subscript (D,f) indicates that the

meas%rrartglr' ¢ FReasre mﬁﬁhFe%%)géthfg e probability distribution

D and the
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correct labeling function f. We omit this subscript when it is clear from

the context. L(
D,f)(h) has several synonymous names such as the general-
ization error, the risk, or the true error of h, and we will use these names

interchangeably throughout the book. We use the letter L for the error,
since we view this error as the loss of the learner. We will later also discuss
other possible formulations of such loss.

- A note about the information available to the learner The learner is

blind to the underlying distribution D over the world and to the labeling

function f. In our papayas example, we have just arrived in a new island
and we have no clue as to how papayas are distributed and how to predict
their tastiness. The only way the learner can interact with the environment
is through observing the training set.
In the next section we describe a simple learning paradigm for the preceding

setup and analyze its performance.

Empirical Risk Minimization

As mentioned earlier, a learning algorithm receives as input a training set S,

sampled from an unknown distribution
D and labeled by some target function

f, and should output a predictor hS :

X =Y (the subscript S emphasizes the
fact that the output predictor depends on S). The goal of the algorithm is to
Bngnfasf’Fhat minimizes the error with respect to the unknown

Since the learner does not know what

D and f are, the true error is not directly
available to the learner. A useful notion of error thatgan be calculated by the
learner is the training error — the error the classifier incurs over the training
sample:

def

m {i€[m]:h(xi)=yi}|LS(h)=, (2.2)
where [m] =

{1,...,m}.

The terms empirical error and empirical risk are often used interchangeably
for this error.
Since the training sample is the snapshot of the world that is available to the

Whfﬁ?ﬁﬁ?ﬁé@%‘?&ﬁg@mmfﬁ%lwon that works well on that data.

This learning paradigm — coming up with a predictor h that minimizes LS(h) —

RRuRNeriBiRR! K14R MRAMFYRDH iR tyithoyt being careful, this approach

may fail miserably.
To demonstrate such a failure, let us go back to the problem of learning to
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predict the taste of a papaya on the basis of its softness and color. Consider a
sample as depicted in the following:

Assume that the probability distribution D is such that instances are distributed

uniformly within the gray square and the labeling function, f, determines the
label to be 1 if the instance is within the inner blue square, and 0 otherwise. The
area of the gray square in the picture is 2 and the area of the blue square is 1.
Consider the following predictor

{ryiif Fi€[m]s.t.xi=xhS(x)=(2.3)0otherwise.

While this predictor might seem rather artificial, in Exercise 1 we show a natural
representation of it using polynomials. Clearly, no matter what the sample is,
LS(hS) = 0, and therefore this predictor may be chosen by an ERM algorithm (it

is one of the empirical-minimum-cost hypotheses; no classifier can have smaller
error). On the other hand, the true error of any classifier that predicts the label

1 only on a finite number of instances is, in this case, 1/2. Thus, L D(hS) = 1/2.

We have found a predictor whose performance on the training set is excellent,
yet its performance on the true “world” is very poor. This phenomenon is called
overfitting. Intuitively, overfitting occurs when our hypothesis fits the training
data “too well” (perhaps like the everyday experience that a person who provides
a perfect detailed explanation for each of his single actions may raise suspicion).

Empirical Risk Minimization with Inductive Bias

We have just demonstrated that the ERM rule might lead to overfitting. Rather
than giving up on the ERM paradigm, we will look for ways to rectify it. We will
search for conditions under which there is a guarantee that ERM does not overfit,
namely, conditions under which when the ERM predictor has good performance
with respect to the training data, it is also highly likely to perform well over the

underlying data distribution.
A common solution is to apply the ERM learning rule over a restricted search
space. Formally, the learner should choose in advance (before seeing the data) a
set of predictors. This set is called a hypothesis class and is denoted lw .Each

h
€ His a function mapping from X to Y. For a given class H, and a tréinli_?g

sample, S, the ERM
H learner uses the ERM rule to choose a predictor h,
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with the lowest possible error over S. Formally,

ERM
kI;I(S) € argmin LS(h),
S

where argmin stands for the set of hypotheses in

H that achieve the minimum

value of LS(h) over
H. By restricting the learner to choosing a predictor from

H, we bias it toward a particular set of predictors. Such restrictions are often
called an inductive bias. Since the choice of such a restriction is determined
before the learner sees the training data, it should ideally be based on some
prior knowledge about the problem to be learned. For example, for the papaya
taste prediction problem we may choose the class

H to be the set of predictors
that are determined by axis aligned rectangles (in the space determined by the
color and softness coordinates). We will later show that ERM H over this class is

guaranteed not to overfit. On the other hand, the example of overfitting that we

have seen previously, demonstrates that choosing H to be a class of predictors

that includes all functions that assign the value 1 to a finite set of domain points

dagsnaisyftigs to guarantee that ERM

A fundamental question in learning theory is, over which hypothesis classes

ERM H learning will not result in overfitting. We will study this question later

pl[%l g ?Rfcé%thesiﬁ Clﬁsses . .
tuitively, choosing a more restricted hypothesis class better protects us
Ipeinahplestitiipg bitestietiranuntinutasigbticaussing arstiopgebouhtbiveits size

tiiast W/ethélhgetbacktpiddsdiondanental tradeoff later.
H). In this section, we show that if H is

a finite class then ERM

H will not overfit, provided it is based on a sufficiently
large training sample (this size requirement will depend on the size of
H).
Limiting the learner to prediction rules within some finite hypothesis class may

be considered as a reasonably mild restriction. For example, H can be the set of

all predictors that can be implemented by a C++ program written in at most

109 bits of code. In our papayas example, we mentioned previously the class of
axis aligned rectangles. While this is an infinite class, if we discretize the repre-
sentation of real numbers, say, by using a 64 bits floating-point representation,
the hypothesis class becomes a finite class.

Let us now analyze the performance of the ERM H learning rule assuming that
H is a finite class. For a training sample, S, labeled according to some f: X =Y,

let hS denote a result of applying ERMH to S, namely,
hS
gargminLS(h). (2.4)h
In this chapter, we make the following simplifying assumption (which will be
relaxed in the next chapter).
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definition 2.1 (The Realizability Assumption) There exists h? EHst

L(

D)(h?,f)=0.Notethatthisassumptionimpliesthatwithprobabilitylover
random samples, S, where the instances of S are sampled according to
Dand

are labeled by f, we have L h?S() = 0.

The realizability assumption implies that for every ERM hypothesis we have
that3 LS(hS) = 0. However, we are interested in the true risk of hS, L(
D,f) (hS),
rather than its empirical risk.
Clearly,anyguaranteeontheerrorwithrespecttotheunderlyingdistribution,
D, for an algorithm that has access only to a sample S should depend on the

relationship between . - .
P D and S. The common assumption in statistical machine

learning is that the training sample S is generated by sampling points from the

Biﬁ]i'aQHgﬂaently of each other. Formally,
« The i.i.d. assumption: The examples in the training set are independently
and identically distributed (i.i.d.) according to the distribution D. That is

every xi in S is freshly sampled according to
D and then labeled according
to the labeling function, f. We denote this assumption by S
Dm where
m is the size of S, and
Dm denotes the probability over m-tuples induced
by applying
D to pick each element of the tuple independently of the other
members of the tuple.
Intuitively, the training set S is a window through which the learner
gets partial information about the distribution
D over the world and the
labeling function, f. The larger the sample gets, the more likely it is to
reflect more accurately the distribution and labeling used to generate it.

Since L(

D,f)(hS) depends on the training set, S, and that training set is picked
by a random process, there is randomness in the choice of the predictor hS

and, consequently, in the risk L( D,H)(hS). Formally, we say that it is a random

variable. It is not realistic to expect that with full certainty S will suffice to

direct the learner toward a good classifier (from the point of view of D), as

there is always some probability that the sampled training data happens to

be very nonrepresentative of the underlying D. If we g0 back to the papaya

tasting example, there is always some (small) chance that all the papayas we
RaveMrippanie iy Taerkingetaisoniasrihiprepitalsy fnddairerhitrthaperenttpthwe
SaPaYReH U BENH A R RBRR Y stRé i Tase, ERM

H(S) may be the constant
function that labels every papaya as “not tasty” (and has 70% error on the true
distribution of papapyas in the island). We will therefore address the probability

to sample a training set for which L(
D,H(hS) is not too large. Usually, we denote
the probability of getting a nonrepresentative sample by §, and call (1
- d) the
confidence parameter of our prediction.
On top of that, since we cannot guarantee perfect label prediction, we intro-

Airicra anAathar nAaramaatrar fFAar +ha Atialidvy AfF Rradicrtiarn tha AT IFAAY RAFAAATA
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commonly denoted by €. We interpret the event L( D.H(hS) > € as a failure of the

learner, while if L(

D,f)(hS) < € we view the output of the algorithm as an approx-
imately correct predictor. Therefore (fixing some labeling function f :

X-=Y),
we are interested in upper bounding the probability to sample m-tuple of in-
stances that will lead to failure of the learner. Formally, let S Ix = (x1,...,xm)
be the instances of the training set. We would like to upper bound

Dm({SIx : L(D,f)(hS) > €}).
Let {€eH
HB be the set of “bad” hypotheses, that is,
In addition, let HB=h :L(D.H(h)>&.
67 : 3h € HB, LS(h) = 0}
be the set of misleading samples: Namely, for every S

|x € M, there is a “bad”
hypothesis, h
€ HB, that looks like a “good” hypothesis on S|x. Now, recall that
we would like to bound the probability of the event L(
D,f)(hS) > €. But, since
the realizability assumption implies that LS(hS) = 0, it follows that the event

L( D,f)(hS) > € can only happen if for some h € HB we have LS(h) = 0. In
other words, this event will only happen if our sample is in the set of misleading

samples, M. Formally, we have shown that
{SIx: L(D,H(hS) >e} & M.

Note that we can rewrite M as

Hence,
UM={S|x:LS(h)=0}. (2.5)h&EH
Dm{S|x:L h € Dm m(D,f)(S)>} < (M)=D(Uh&EH{S|x:LS(h)=0}).B

(2.6)
Next, we upper bound the right-hand side of the preceding equation using the
union bound — a basic property of probabilities.
lemma 2.2 (Union Bound) For any two sets A,B and a distribution

have Dwe

D(A U B) < D(A) + D(B).
Applying the union bound to the righ

b o<
Yt-handsideofEquation(2.6)yieldsDm({S|:L((h>eDmxD,)S))({S|x:LS(h)=0}).(2.7)hEHB
Next, let us bound each summand of the right-hand side of the preceding in-
equality.Fixsome“bad”hypothesish B.TheeyentLS(h)=0isequivalent
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to the eventvi ,b)ﬁ ) = (f xi). Since the examples in the training set are sampled
i.i.d. we get that

l:Lh}DMXS@=8=({ S

TTESIx: Vi,h(xi)=f(xi)hm=D({xi:h(xi)=Ff(xi)}).(2.8)i=1

For each individual sampling of an element of the training set we have
D(xi:h(xi)=yip=1-L(D,Hh)<1l-¢

where the last inequality follows from the fact that h
€ HB. Combining the

previous equation with Equation (2.8) and using the inequality 1

-g<e-tgwe
obtain that for every h
€ HB,

Dm({S|:L(h)=0})<(1-g)mxS<e-em.(2.9)
Combining this equation with Equation (2.7) we conclude that
Dm({S|:L(h)>e})<|H|e-em<|H|-emx(D,f)SBe.

A graphical illustration which explains how we used the union bound is given in
Figure 2.1.

Figure 2.1 Each point in the large circle represents a possible m-tuple of instances.
Each colored oval represents the set of “misleading” m-tuple of instances for some
“bad” predictor h . ) )
€ HB. The ERM can potentially overfit whenever it gets a
misleading training set S. That is, for some h
€ HB we have LS(h) = 0.
Equation (2.9) guarantees that for each individual bad hypothesis, h
€ HB, at most
a

- g)m-fraction of the training sets would be misleading. In particular, the larger m
is, the smaller each of these colored ovals becomes. The union bound formalizes the
fact that the area representing the training sets that are misleading with respect to
some h
€ HB (that is, the training sets in M) is at most the sum of the areas of the
colored ovals. Therefore, it is bounded by
corollary 2.3 Let y be afinite hypotHEdiSrokssthe ataxinge(BjzE)ohndatored
oval. Any sample S outside the colored ovals cannot cause the ERM rule to overfit.
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and let m be an integer that satisfies

g log( H1/6)
Then, for any labeling function, , anfd for any distribution, , for which the
D h ()=0), with
realizability assumption holds (that is, for some h S ofsizem, we
hs € H, L(D,f)

robability of at least 1
(é)mr the choice of an i.i.d. sample/¥ h

fravethatiirge s bR YA hesiRat ohaldatEEntly large m, the ERM

Hrule
over a finite hypothesis class will be probably (with confidence 1
-8) approximately
(up to an error of €) correct. In the next chapter we formally define the model
of Probably Approximately Correct (PAC) learning.

Exercises

1. Overfitting of polynomial matching: We have shown that the predictor
defined in Equation (2.3) leads to overfitting. While this predictor seems to
be very unnatural, the goal of this exercise is to show that it can be described
as a thresholded polynomial. That is, show that given a training set S =
{(x,fxIm=1SRdx{,}mi(i))i(01),thereexistsapolynomialpSsuchthat
hS(x) =1 ifand only if pS(x) >0, where hSis as defined in Equation (2.3).
It follows that learning the class of all thresholded polynomials using the ERM
rule may lead to overfitting.
2. Let
H be a class of binary classifiers over a domain X. Let D be an unknown
distribution over
X, and let f be the target hypothesis in H. Fix some h € H.
Show that the expected value of LS(h) over the choice of S
|x equals L(D,f)(h),
namely,
E [LS(h)]=L(
P.bMk).S
3. Axis aligned rectangles: An axis aligned rectangle classifier in the plane
is a classifier that assigns the value 1 to a point if and only if it is inside a
certain rectangle. Formally, given real numbers al
< bl,a2 < b2, define the
classifier h(a
1,bl1,a2,b2) by

{lifalsxl<blanda2s<x2<b2h(al,bl,a2,b2)(x1,x2)=.(2.10)0otherwise
The class of all axis aligned rectangles in the plane is defined as

H2rec={h(a :a<b,anda<b1,b1,a2,b2) 1 1 2 2}.

Note that this is an infinite size hypothesis class. Throughout this exercise we
rely on the realizability assumption.
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1. Let A be the algorithm that returns the smallest rectangle enclosing all
positive examples in the training set. Show that A is an ERM.
2. Show that if A receives a training set of size

N >4log(4/d)e then,withproba-
bility of at least 1
- 0 it returns a hypothesis with error of at most €.

Hint: Fix some distribution
DoverX,letR*=R(a* * * *1,bl,a2,b2)betherect-
angle that generates the labels, and let f be the corresponding hypothesis.

Leta x1 - .
> al be a number such that the probability mass (with respect
to

D)oftherectangleR= * * *x1 R(al,al,a2,b2)isexactlye/4.Similarly,let
b1,a2,b2 be numbers such that the probability masses of the rectangles
R=R(b,b*,a*,b*x),R=* * * * * %¥211223R(al,bl,a2,a2),R4=R(al,bl,b2,b2)areall
exactly /4. Let R(S) be the rectangle returned by A. See illustration in
Figure 2.2.

R *

RGS)

A
!

Figure 2.2 Axis aligned rectangles.

« ShowthatR(S)ER *.

« Show that if S contains (positive) examples in all of the rectangles

R1,R2,R3,R4, then the hypothesis returned by A has error of at

most €.

« Foreachi € {1,...,4}, upper bound the probability that S does not
contain an example from Ri.
« Usetheunionboundtoconcludetheargument.
3. Repeat the previous question for the class of axis aligned rectangles in Rd.
4. Show that the runtime of applying the algorithm A mentioned earlier is
polynomialind, 1/¢, and in log(1/0).
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In this chapter we define our main formal learning model — the PAC learning
model and its extensions. We will consider other notions of learnability in Chap-
ter 7.

PAC Learning

In the previous chapter we have shown that for a finite hypothesis class, if the
ERM rule with respect to that class is applied on a sufficiently large training
sample (whose size is independent of the underlying distribution or labeling
function) then the output hypothesis will be probably approximately correct.
More generally, we now define Probably Approximately Correct (PAC) learning.

definition 3.1 (PAC Learnability) A hypothesis class

His PAC learnable
ifthereexistafunctionm 2
H:(0,1) = N and a learning algorithm with the
following property: For every €,0
€ (0,1), for every distribution D over X, and
for every labeling function f :
X —{0,1}, if the realizable assumption holds
with respect to
H,D,f, then when running the learning algorithm on m >
m
H(g, ) i.i.d. examples generated by D and labeled by f, the algorithm returns
a hypothesis h such that, with probability of at least 1
- 0 (over the choice of

the examples), L(
D,f)(h) < e.
The definition of Probably Approximately Correct learnability contains two

approximation parameters. The accuracy parameter € determines how far the
output classifier can be from the optimal one (this corresponds to the “approx-
imately correct”), and a confidence parameter 9 indicating how likely the clas-
sifier is to meet that accuracy requirement (corresponds to the “probakm/" part
of “PAC”). Under the data access model that we are investigating, thBse ap-
BE%W?;EQQS '\a/llra%rlwn%vne%tr)rl]e Since the training set is randomly generated, there
ﬂ%f & a small'éhante that Rl vppER BB S hopirorRaTe (forex-
er onél e OnPyaﬁﬂ@% & E’ﬁéﬁﬁ%&fﬁ%& the training set will contain only one

dlstr| tion
grmain poin h%?r?)%v%woc"seﬁ FheQvet r%%é)[] Jurhermore. eyenvhen we are
lucky enough to get a training sample that does faﬂhful?y represent , because
it is just a finite sample, there may always be some fine details of that it fails
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to reflect. Our accuracy parameter, €, allows “forgiving” the learner’s classifier
for making minor errors.

Sample Complexity

The function m : (0 1)2 H, »NdeterminesthesamplecomplexityoflearningH:
that is, how many examples are required to guarantee a probably approximately
correct solution. The sample complexity is a function of the accuracy (€) and
confidence (8) parameters. It also depends on properties of the hypothesis class
H — for example, for a finite class we showed that the sample complexity depends

on log the size of
H

Note that if

His PAC learnable, there are many functions mH that satisfy the
requirements given in the definition of PAC learnability. Therefore, to be precise,

we will define the sample complexity of learning H to be the “minimal function.”

in the sense that for any €,6, m

H(g,8) is the minimal integer that satisfies the
requirements of PAC learning with accuracy € and confidence 6.

Let us now recall the conclusion of the analysis of finite hypothesis classes
bomplbgigfevious chapter. It can be rephrased as stating:

corelbgyHPy ByRimeiBhypothesisclassisPAClearnablewithsample

There are infinite classes that are learnable as well (see, for example, Exer-
cise 3). Later on we will show that what determines the PAC learnability of
a class is not its finiteness but rather a combinatorial measure called the VC
dimension.

A More General Learning Model

The model we have just described can be readily generalized, so that it can be
made relevant to a wider scope of learning tasks. We consider generalizations in
two aspects:

Removing the Realizability Assumption
We have required that the learning algorithm succeeds on a pair of data distri-

bution
D and labeling function f provided that the realizability assumption is

met. For practical learning tasks, this assumption may be too strong (can we
really guarantee that there is a rectangle in the color-hardness space that fully
determines which papayas are tasty?). In the next subsection, we will describe
the agnostic PAC model in which this realizahility assumption is waived.
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Learning Problems beyond Binary Classification

The learning task that we have been discussing so far has to do with predicting a
binary label to a given example (like being tasty or not). However, many learning
tasks take a different form. For example, one may wish to predict a real valued
number (say, the temperature at 9:00 p.m. tomorrow) or a label picked from a
finite set of labels (like the topic of the main story in tomorrow’s paper). It turns
out that our analysis of learning can be readily extended to such and many other
scenarios by allowing a variety of loss functions. We shall discuss that in Section
3.2.2 later.

Releasing the Realizability Assumption — Agnostic PAC Learning

A More Realistic Model for the Data-Generating Distribution
Recall that the realizability assumption requires that there exists ~ h? < H such

thatP [?x

D h (x) = f(x)] = 1. In many practical problems this assumption does
not hold. Furthermore, it is maybe more realistic not to assume that the labels
are fully determined by the features we measure on input elements (in the case of
the papayas, it is plausible that two papayas of the same color and softness will
have different taste). In the following, we relax the realizability assumption by
replacing the “target labeling function” with a more flexible notion, a data-labels
generating distribution.
Formally, from now on, let

D be a probability distribution over X x Y, where,

as before,

Xis our domain set and Y is a set of labels (usually we will consider
Y ={0, 1}). That is, D is a joint distribution over domain points and labels. One
can view such a distribution as being composed of two parts: a distribution Dx

over unlabeled domain points (sometimes called the marginal distribution) and
a conditional probability over labels for each domain point, D((x,y)|x). In the

papaya example,
Dx determines the probability of encountering a papaya whose
color and hardness fall in some color-hardness values domain, and the conditional

?hoé)@ 'ét §r9§0[lﬁaeb %e}, 9Y€e ith color and hardness represented
x |s élbli CFSfI‘?EIC mga 0WSs ortwo papayas that share the same

co [oF Bhe Rardmess o BELONE to diffdeAvesste daterpisas measure how likely his
to make an error when labeled points are randomly drawn according to

D.We
redefine the true error (or risk) of a prediction rule h to be

6 6
def

fiL
DRI DA 0:h60=y).(3.D(x)
We would like to find a predictor, h, for which that error will be minimized.
However, the learner does not know the data generating D. What the learner
does have access to is the training data, S. The definition of the empirical risk
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remains the same as before, namely,

def 6
l%iE[m]:h(xi):yi}ILS(h):

Given S, a learner can compute LS(h) for any function N : X - 70,1 1. Note
that LS(h) = LD(uniform over S)(h).

The Goal
We wish to find some hypothesis, h x = y »that (probably approximately)
minimizes the true risk, LD(h).

The Bayes Optimal Predictor.

Given any probability distribution D over X x {0,1}, the best label predicting

function from
X to {0,1} will be

{1ifP[y=1|x]>1/2fD(x)=00therwise

It is easy to verify (see Exercise 7) that for every probability distribution 0

the Bayes optimal predictor f

D is optimal, in the sense that no other classifier,
£ X — {0, 1} has a lower error. That is, for every classifier g, LD(fD) < LD(g).
Unfortunately, since we do not know

D, we cannot utilize this optimal predictor

f
D. What the learner does have access to is the training sample. We can now
present the formal definition of agnostic PAC learnability, which is a natural
extension of the definition of PAC learnability to the more realistic, nonrealizable,
learning setup we have just discussed.

Clearly, we cannot hope that the learning algorithm will find a hypothesis
whose error is smaller than the minimal possible error, that of the Bayes predic-
tor.

Furthermore, as we shall prove later, once we make no prior assumptions
about the data-generating distribution, no algorithm can be guaranteed to find
a predictor that is as good as the Bayes optimal one. Instead, we require that
the learning algorithm will find a predictor whose error is not much larger than
the best possible error of a predictor in some given benchmark hypothesis class.
Of course, the strength of such a requirement depends on the choice of that
hypothesis class.

definition 3.3 (Agnostic PAC Learnability) A hypothesis class
H is agnostic
PAC learnable if there exist a function m
enH?(0, 1)2 = N and a learning algorithm
with the following property: For every €, &
€ (0, 1) and for every distribution D
over
X xY, when running the learning algorithm on m > mH(g, &) i.i.d. examples
generated by
D, the algorithm returns a hypothesis h such that, with probability
of at least 1
- & (over the choice of the m training examples),
L(h)

<mLh’Din()+€.h’
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Clearly, if the realizability assumption holds, agnostic PAC learning provides

the same guarantee as PAC learning. In that sense, agnostic PAC learning gener-

alizes the definition of PAC learning. When the realizability assumption does not

hold, no learner can guarantee an arbitrarily small error. Nevertheless, under the

definition of agnostic PAC learning, a learner can still declare success if its error
is not much larger than the best error achievable by a predictor from the class

This is in contrast to PAC learning, in which the learner is required to achieve
a small error in absolute terms and not relative to the best error achievable by
the hypothesis class.

The Scope of Learning Problems Modeled

We next extend our model so that it can be applied to a wide variety of learning
tasks. Let us consider some examples of different learning tasks.

- MulticlassClassificationQOurclassificationdoesnothavetobebinary.

Take, for example, the task of document classification: We wish to design a
program that will be able to classify given documents according to topics
(e.g., news, sports, biology, medicine). A learning algorithm for such a task
will have access to examples of correctly classified documents and, on the
basis of these examples, should output a program that can take as input a
new document and output a topic classification for that document. Here,
the domain set is the set of all potential documents. Once again, we would
usually represent documents by a set of features that could include counts
of different key words in the document, as well as other possibly relevant
features like the size of the document or its origin. The label set in this task

will be the set of possible document topics (so ¥ will be some large finite

set). Once we determine our domain and label sets, the other components
of our framework look exactly the same as in the papaya tasting example;
Our training sample will be a finite sequence of (feature vector, label) pairs,
the learner’s output will be a function from the domain set to the label set,
and, finally, for our measure of success, we can use the probability, over
(document, topic) pairs, of the event that our predictor suggests a wrong
lab el.
- RegressionInthistask,onewishestofindsomesimplepattern inthedata-
a functional relationship between the
X and Y components of the data. For
example, one wishes to find a linear function that best predicts a baby’s
birth weight on the basis of ultrasound measures of his head circumference,
abdominal circumference, and femur length. Here, our domain set
X is some
subset of R3 (the three ultrasound measurements), and the set of “labels,”
Y, is the the set of real numbers (the weight in grams). In this context,
it is more adequate to call
Y the target set. Our training data as well as
the learner’s output are as before (a finite sequence of (x,y) pairs, and

a function from X to Y respectively). However, our measure of success is
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different. We may evaluate the quality of a hypothesis function, h : X =Y

by the expected square difference between the true labels and their predicted

values, namely,
def

b=Eh(-y)2. 3.2xy)

To accommodate a wide range of learning tasks we generalize our formalism
of the measure of success as follows:

Generalized Loss Functions

Given any set H (that plays the role of our hypotheses, or models) and some

domain Z let * be any function from
HxZ to the set of nonnegative real numbers,

HxZ-R+.
We call such functions loss functions.

Note that for prediction problems, we have that Z = X x Y. However, our

notion of the loss function is generalized beyond prediction tasks, and therefore
it allows Z to be any domain of examples (for instance, in unsupervised learning
tasks such as the one described in Chapter 22, Z is not a product of an instance
domain and a label domain).
We now define the risk function to be the expected loss of a classifier, h

€H,
with respect to a probability distribution D over Z, namely,

def
b)=El" (h2)]. 3.3)z

That is, we consider the expectation of the loss of h over objects z picked ran-

domly accordingto  p_gimilarly, we define the empirical risk to be the expected

lossoveragivensampleS=(z z m1,...,m)

YEZ" ,namely,mdef1LS(h)=(h,zi).(3.4)mi=1
The loss functions used in the preceding examples of classification and regres-
sion tasks are as follows:

» 0-1 loss: Here, our random variable z ranges over the set of pairs X xY and
the loss function is

{defoifh(x)=y " 0-1(h,(x,y))=1ifh(x)

6=y
This loss function is used in binary or multiclass classification problems.
One should note that, for a random variable, a, taking the values {0, 1}
Ea
D[a] =Pa D[a =1]. Consequently, for this loss function, the defini-
tions of L

D(h) given in Equation (3.3) and Equation (3.1) coincide.

« SquarelLoss:Here,ourrandomvariablezrangesoverthesetofpairsXxY
and the loss function is

def

-y). " (h,(x.y 2s))=(h(x)
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This loss function is used in regression problems.

We will later see more examples of useful instantiations of loss functions.

To summarize, we formally define agnostic PAC learnability for general loss
functions.

definition 3.4 (Agnostic PAC Learnability for General Loss Functions) A

hypothesis class H is agnostic PAC learnable with respect to a set Zand a

loss function * :
HxZ—R, mH,2+ifthereexistafunction:(01)—=N
and a learning algorithm with the following property: For every €,6
€ (0,1)
and for every distribution
D over Z, when running the learning algorithm on
m

> mH(g,6) i.i.d. examples generated by D, the algorithm returns h € H
such that, with probability of at least 1
- & (over the choice of the m training
examples),

II5(h)sminL(h')+s,h’D EH

where L

D(h)=Ez D[ (h, 2)].

Remark 3.1 (A Note About Measurability*) In the aforementioned definition,
forevery h
define L

€ H, we view the function *(h, -) : Z—= R+ as a random variable and

D(h) to be the expected value of this random variable. For that, we need
to require that the function " (h,
-) is measurable. Formally, we assume that there

is a o-algebra of subsets of Z, over which the probability
D is defined, and that
the preimage of every initial segment in R+ is in this o-algebra. In the specific

case of binary classification with the 0 ~1 loss, the o-algebra is over X x {0,1}

and our assumption on ' is equivalent to the assumption that for every h, the

{E&t h(x)) : x € X}is in the o-algebra.
Remark 3.2 (Proper versus Representation-Independent Learning*) In the pre-

ceding definition, we required that the algorithm will return a hypothesis from
H. In some situations, H is a subset of a set H’, and the loss function can be

SﬂﬁrﬁWa‘?VendEd to be a function from H’ x Z to the reals. In this case, we
may allow the algorithm to return a hypothesis h’
In this chapter we defined our main formal learning otk as FAE kaihbagisTies
Haeiemo@snesties on the realizability assumption, while the agnostic variant does
D(h) < minh&€H LD(h) + €. Allowing the algorithm to output
a hypothesis from
H”is called representation independent learning, while proper
learning occurs when the algorithm must output a hypothesis from
H. Represen-
tation independent learning is sometimes called “improper learning,” although
there is nothing improper in representation independent learning.
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not impose any restrictions on the underlying distribution over the examples. We
also generalized the PAC model to arbitrary loss functions. We will sometimes
refer to the most general model simply as PAC learning, omitting the “agnostic”
prefix and letting the reader infer what the underlying loss function is from the
context. When we would like to emphasize that we are dealing with the original
PAC setting we mention that the realizability assumption holds. In Chapter 7 we
will discuss other notions of learnability.

Bibliographic Remarks

Our most general definition of agnostic PAC learning with general loss func- tions
follows the works of Vladimir Vapnik and Alexey Chervonenkis (Vapnik &
Chervonenkis 1971). In particular, we follow Vapnik’s general setting of learning
(Vapnik 1982, Vapnik 1992, Vapnik 1995, Vapnik 1998).

PAC learning was introduced by Valiant (1984). Valiant was named the winner
of the 2010 Turing Award for the introduction of the PAC model. Valiant’s
definition requires that the sample complexity will be polynomial in 1/€ and in 1/
8, as well as in the representation size of hypotheses in the class (see also
Kearns & Vazirani (1994)). As we will see in Chapter 6, if a problem is at all PAC
learnable then the sample complexity depends polynomially on 1/€ and log(1/6).
Valiant’s definition also requires that the runtime of the learning algorithm will be
polynomial in these quantities. In contrast, we chose to distinguish between the
statistical aspect of learning and the computational aspect of learning. We will
elaborate on the computational aspect later on in Chapter 8, where we introduce
the full PAC learning model of Valiant. For expository reasons, we use the term
PAC learning even when we ignore the runtime aspect of learning. Finally, the
formalization of agnostic PAC learning is due to Haussler (1992).

Exercises

1. Monotonicity of Sample Complexity: Let H be a hypothesis class for a

binary classification task. Suppose that
His PAC learnable and its sample
complexity is given by m
H(:, -). Show that mH is monotonically nonincreasing
in each of its parameters. That is, show that given &
€ (0, 1), and given 0 <

el
< €2 <1, we have that mH(€1,8) > mH(€2,8). Similarly, show that given

€
€ (0, 1), and given 0 < 61 < 62 < 1, we have that mH(g, 61) > mH(g, 62).
2. Let

Xbeadiscretedomain,andletH {hz&X}U{h-Singleton=z: },where
foreach z

€ X, hzis the function defined by hz(x) =1 if x =z and hz(x) =0
ifx

6= z. h—is simply the all-negative hypothesis, namely, Vx € X, h-(x) = 0.
The realizability assumption here implies that the true hypothesis f labels
negatively all examples in the domain, perhaps except one.
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1. DescribeanalgorithmthatimplementstheERMruleforlearning

HSingleton
in the realizable setup.
2. Show that HSingleton is PAC learnable. Provide an upper bound on the
sample complexity.
3. Let X=R2,Y ={0,1}, and let H be the class of concentric circles in the
plane, that is,

H = {hr: r € R+}, where hr(x) = 1[||x||<r]. Prove that H is
PAC learnable (assume realizability), and its sample complexity is bounded

by

[<log(1/8)mH(e,5).€

4. In this question, we study the hypothesis class of Boolean conjunctions defined
as follows. The instance space is
X =10, 1}d and the label setis Y ={0, 1}. A

literal over the variables x1, . . ., xd is a simple Boolean function that takes the

form f(x) = xi, for some i € [d], or f(x) = 1 - xi for some i € [d]. We use the
notation X"i as a shorthand for 1
-Xi. A conjunction is any product of literals.
In Boolean logic, the product is denoted using the
A sign. For example, the
function h(x) = x1
- (1 -x2) is written as x1 A X~ 2.
We consider the hypothesis class of all conjunctions of literals over the d
variables. The empty conjunction is interpreted as the all-positive hypothesis
(namely, the function that returns h(x) = 1 for all x). The conjunction x1
Ax™1
(and similarly any conjunction involving a literal and its negation) is allowed
and interpreted as the all-negative hypothesis (namely, the conjunction that
returns h(x) = 0 for all x). We assume realizability: Namely, we assume
that there exists a Boolean conjunction that generates the labels. Thus, each
example (x,y)
€ X x Y consists of an assignment to the d Boolean variables
x1, ..., xd, and its truth value (0 for false and 1 for true).
For instance, let d = 3 and suppose that the true conjunction is x1 AX2.

Then, the training set S might contain the following instances:
((14,1,1),0),((1,0,1),1),((0,1,0),0)(1,0,0),1).

Prove that the hypothesis class of all conjunctions over d variables is
PAC learnable and bound its sample complexity. Propose an algorithm that
implements the ERM rule, whose runtime is polynomial in d
-m.
5. Let
X b &dofhain and let D1,D2,....Dm be a sequerr<c<13 lBfldistributions
over
X. Let H be a finite class of binary classifiers over X and let f € H.
Suppose we are getting a sample S of m examples, such that the instances are
independent but are not identically distributed; the ith instance is sampled
from
Di and then yi is set to be f(xi). Let D”m denote the average, that is,
D™ m=(D1+---+Dm)/m.

Fix an
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Hint: Use the geometric-arithmetic mean inequality.

6. Let
H be a hypothesis class of binary classifiers. Show that if H is agnostic

PAC learnable, then
H is PAC learnable as well. Furthermore, if A is a suc-
cessful agnostic PAC learner for
H, then A is also a successful PAC learner
for
H.
7. (*) The Bayes optimal predictor: Show that for every probability distri-

bution D, the Bayes optimal predictor fD is optimal, in the sense that for
every classifier g from

X to {0,1}, LD(fD) < LD(g).

8. (*) We say that a learning algorithm A is better than B with respect to some

Brﬂbability distribution,

L
D(A(S)) < LD(B(S))
for all samples S

€ (X x{0, 1})m. We say that a learning algorithm A is better
than B, if it is better than B with respect to all probability distributions

D
over
X x {0, 1}.
1. A probabilistic label predictor is a function that assigns to every domain
point x a probability value, h(x) € [0, 1], that determines the probability of

predicting the label 1. That is, given such an h and an input, x, the label for
x is predicted by tossing a coin with bias h(x) toward Heads and predicting
1 iff the coin comes up Heads. Formally, we define a probabilistic label

predictor as a function, h: X = [0,1]. The loss of such h on an example

(x,y) is defined to be
[h(x) - yl, which is exactly the probability that the
prediction of h will not be equal to y. Note that if h is deterministic, that
o, "BLUYRSY IS = 1[h(x)=6 y.
Prove that for every data generating distribution
D over X x {0,1}, the
Bayes optimal predictor has the smallest risk (w.r.t. the loss function

“(h, (x,y) = [h(x)-yl|, among all possible label predictors, including prob-
abilistic ones).
2. Let

distribution

X be a domain and {0,1} be a set of labels. Prove that for every

D over X x {0, 1}, there exist a learning algorithm AD that is
better than any other learning algorithm with respect to

D.

3. Prove that for every learning algorithm A there exist a probability distri-
bution, D, and a learning algorithm B such that A is not better than B
w.r.t.
D.

9. Consider a variant of the PAC model in which there are two example ora-
cles: one that generates positive examples and one that generates negative
examples, both according to the underlying distribution
D on X. Formally,
given a target function f :
X —{0,1}, let D+ be the distribution over
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of the two training sets, and possibly over the nondeterministic decisions
made by the learning algorithm), both L(D+,f)(h)
< eand L(D-,f)(h) < e.
1. (*) Show that if
H is PAC learnable (in the standard one-oracle model),
then
His PAC learnable in the two-oracle model.
2. (**) Define h+ to be the always-plus hypothesis and h- to be the always-

minus hypothesis. Assume that h+, h— € H. Show that if H is PAC learn-
able in the two-oracle model, then

H is PAC learnable in the standard
one-oracle model.



4.1

Learning via Uniform Convergence

The first formal learning model that we have discussed was the PAC model. In
Chapter 2 we have shown that under the realizability assumption, any finite
hypothesis class is PAC learnable. In this chapter we will develop a general tool,
uniform convergence, and apply it to show that any finite class is learnable in the
agnostic PAC model with general loss functions, as long as the range loss
function is bounded.

Uniform Convergence Is Sufficient for Learnability

The idea behind the learning condition discussed in this chapter is very simple.

Recall that, given a hypothesis class,
H, the ERM learning paradigm works

as follows: Upon receiving a training sample, S, the learner evaluates the risk

F—%ﬁr{ﬁé)g‘?\f/@ﬁglﬁr“brl‘e and outputs a member of H that

minimizes this empirical risk. The hope is that an h that minimizes the empirical
risk with respect to S is a risk minimizer (or has risk close to the minimum) with
respect to the true data probability distribution as well. For that, it suffices to

s §4Bat4Bp BRI RIEABhE g of all members of
their true risk. Put another way, we need that uniformly over all hypotheses in

the hypothesis class, the empirical risk will be close to the true risk, as formalized
in the following.

definition 4.1 (e-representative sample) A training set S is called €-representative

(Wiptsdomain g hnathesisisiafm o) if
Vh € H, [ILS(h) - LD(h)]| < «.

The next simple lemma states that whenever the sample is (€/2)-representative,
the ERM learning rule is guaranteed to return a good hypothesis.

lemma 4.2 Assume that a training set Sis €

2-representative (w.r.t. domain
Z, hypothesis class o
H, loss function *, and distribution D). Then, any output of

ERM o
H(S), namely, any hS € argminh&H LS(he)t'satisﬁes

bnderstandin&ll\/lachine Learning, ©c2014byShaiShalev-ShwartzandShaiBen-David
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geagf Foreveryh
L(h)L(h)+€L(h)+€ €€ - _ _
DS<SS2<S2<LD(h)+2+2=LD(h)+¢,
where the first and third inequalities are due to the assumption that Sis €
2

representative (Definition 4.1) and the second inequality holds since hS is an
ERM predictor.

The preceding lemma implies that to ensure that the ERM rule is an agnostic

PAC learner, it suffices to show that with probability of at least 1 — & over the

random choice of a training set, it will be an €-representative training set. The
uniform convergence condition formalizes this requirement.

definition 4.3 (Uniform Convergence) We say that a hypothesis class

Hhas
the uniform convergence property (w.r.t. a domain Z and a loss function ") if

there exists a function muC : (0,1)2 H —Nsuchthatforeverye,6 €(0,1)and
for every probability distribution

D over Z, if Sis a sample of m > mUCH (g,8)
examples drawn i.i.d. according to

D, then, with probability of at least 1 - §, S

is e-representative.

Similar to the definition of sample complexity for PAC learning, the function

muC H measures the (minimal) sample complexity of obtaining the uniform con-
vergence property, namely, how many examples we need to ensure that with

robability of at least 1
P g tﬁe sa¥‘nple would be e-representative.

The term uniform here refers to having a fixed sample size that works for all

H@W@S%Pﬁﬂ%ééible probability HistaEbtHeonsiforen ttendengeince property with a

functibimenidl@wing corollary follows directly from Lemma 4.2 and the definition of

uniform convétgierethe class is agnostically PAC learnable with the sample com-

Rlﬁxity m (5,0
: <mUCHHe/,d.Furthermore,inthatcase,theHparadigm

is a successful agnostic PAC learner for

H2) ERM

Finite Classes Are Agnostic PAC Learnable

In view of Corollary 4.4, the claim that every finite hypothesis class is agnostic
PAC learnable will follow once we establish that uniform convergence holds for a
finite hypothesis class.

To show that uniform convergence holds we follow a two step argument, similar
to the derivation in Chapter 2. The first step applies the union bound while the
second step employs a measure concentration inequality. We now explain these
two steps in detail.

Fix some €,6. We need to find a sample size m that guarantees that for any
D, with probability of at least 1 - & of the choice of S = (z1,...,zm) sampled
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bl hATk that for all h € H, [LS(h) - LD(h)| < €. That is,
Dm({S : ¥Yh € H, [LS(h) - LD(h)| < €}) =1 - &.

Equivalently, we need to show that
Dm{S: 3h € H, [LS(h) - LD(h)| > €}) < d.
Writing

{S: 3h € H, |[LS(h) - LD(h)| > €} = Uherl]—|{5:|LS(h)—LD()
> €
and applying the union bound (Lemma 2.2) b

YweobtainDm({S:h,L(h)-L(h)|>e)DmSD({S:|LS(h)-LDO/lh I €H| }< h>¢g}).
EH

(4.2)
Our second step will be to argue that each summand of the right-hand side
of this inequality is small enough (for a sufficiently large m). That is, we will
show that for any fixed hypothesis, h, (which is chosen in advance prior to the
sampling of the training set), the gap between the true and empirical risks,

[LS(h) = LD(h)], is likely to be small.

Sllthat()=E[(I1mRecalLDhz Dh,z)]andthatLS(h)=mi=1(h,zi).Sinceeachziissampledi.i.d.from" D,theexp

(h,zi) is L D(h). By the linearity of expectation, it follows that LD(h) is also
the expected value of LS(h). Hence, the quantity
[LD(h)-LS(h)| is the deviation
of the random variable LS(h) from its expectation. We therefore need to show

that the measure of LS(h) is concentrated around its expected value.
A basic statistical fact, the law of large numbers, states that when m goes to

infinity, empirical averages converge to their true expectation. This is true for
LS(h), since it is the empirical average of mi.i.d random variables. However, since
the law of large numbers is only an asymptotic result, it provides no information
about the gap between the empirically estimated error and its true value for any
given, finite, sample size.

Instead, we will use a measure concentration inequality due to Hoeffding, which
quantifies the gap between empirical averages and their expected value.
lemma 4.5 (Hoeffding’s Inequality) Let 81,...,6m be a sequence of i.i.d. ran-

dom variables and assume that for all i, E[6i] = p and P[a <Bi<b]=1.Then
foranye>0

[ — (

LY 1T Im

I 1)P122mBi-p>e<2exp-2me/(b-a).i=1TheproofcanbefoundinAppendixB.

Getting back to our problem, let Bi be tZe random variable * (h,zi). Since h
is fixed and z1, . .., zm are sampled i.i.d., it follows that 61, ..., 8m are also i.i.d.

faftiom variables. Furthermore, LS(h) = m i=16iandLD(h)=p.Letus
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further assume that the range of * is [0, 1] and therefore Bi [0, 1]. We therefore
obtain that

Dm(S:|LS(h)-LD(h)|>€})=P Bi-p>e [

1 [
171 sm | 1] = 20 (-2meg.
l 1mi=1 4.2)
Combining this with Equation (4.1) yields ( )
>
3 D (Es:|h ,LS(h)-LD@I> £ }) < 2exp C 2me
€H h ).
“3n| -2
Finally, if we choose 2me
log (2] H/IO
N g(2 H/0) ,
€2
then

corollary4.6 Let beaﬁr#iltehypothesisclass,let beadomain,agdlet

H x Z = [0,1] be a loss function. Then, H enjoys the uniform convergence
property with sample complexity

my (e, 6)c OB,

Furthermore, the class is agnostically PAC learnable using the ERM algorithm
with sample complexity

[1=2log(2|H|/®)me,dmUCH(OH(g/2,0)<.€2

Remark 4.1 (The “Discretization Trick”) While the preceding corollary only
applies to finite hypothesis classes, there is a simple trick that allows us to get
a very good estimate of the practical sample complexity of infinite hypothesis
classes. Consider a hypothesis class that is parameterized by d parameters. For
example, let
X =R, Y ={+1}, and the hypothesis class, H, be all functions
of the form hB(x) = sign(x
- 0). That is, each hypothesis is parameterized by
one parameter, 0
€ R, and the hypothesis outputs 1 for all instances larger than
0 and outputs
-1 for instances smaller than 6. This is a hypothesis class of an
infinite size. However, if we are going to learn this hypothesis class in practice,
using a computer, we will probably maintain real numbers using floating point
representation, say, of 64 bits. It follows that in practice, our hypothesis class
is parameterized by the set of scalars that can be represented using a 64 bits
floating point number. There are at most 264 such numbers; hence the actual
size of our hypothesis class is at most 264. More generally, if our hypothesis class
is parameterized by d numbers, in practice we learn a hypothesis class of size at
most 264d. Applying Corollary 4.6 we obtain that the sample complexity of such
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classes is bounded by 128d+2108(2/8) c5 Thisupperboundonthesamplecomplex-
ity has the deficiency of being dependent on the specific representation of real
numbers used by our machine. In Chapter 6 we will introduce a rigorous way

to analyze the sample complexity of infinite size hypothesis classes. Neverthe-
less, the discretization trick can be used to get a rough estimate of the sample
complexity in many practical situations.

Summary

If the uniform convergence property holds for a hypothesis class H then in most

cases the empirical risks of hypotheses in

H will faithfully represent their true
risks. Uniform convergence suffices for agnostic PAC learnability using the ERM
rule. We have shown that finite hypothesis classes enjoy the uniform convergence
property and are hence agnostic PAC learnable.

Bibliographic Remarks

Classes of functions for which the uniform convergence property holds are also
called Glivenko-Cantelli classes, named after Valery Ivanovich Glivenko and
Francesco Paolo Cantelli, who proved the first uniform convergence result in the
1930s. See (Dudley, Gine & Zinn 1991). The relation between uniform con-
vergence and learnability was thoroughly studied by Vapnik — see (Vapnik 1992,
Vapnik 1995, Vapnik 1998). In fact, as we will see later in Chapter 6, the funda-
mental theorem of learning theory states that in binary classification problems,
uniform convergence is not only a sufficient condition for learnability but is also a
necessary condition. This is not the case for more general learning problems (see
(Shalev-Shwartz, Shamir, Srebro & Sridharan 2010)).

Exercises

1. In this exercise, we show that the (€,86) requirement on the convergence of
errors in our definitions of PAC learning, is, in fact, quite close to a sim-

pler looking requirement about averages (or expectations). Prove that the
following two statements are equivalent (for any learning algorithm A, any

Brobability distribution .
, and any loss function whose range is [0, 1]):

1. For every €,6 > 0, there exists m(g,8) such that
¥'m = mf(g, 0)

PIL

D(A(S))>€]<8Sm

D

M_owS Dm
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(WB%PUEﬁotes the expectation over samples S of size m).
2. Bounded loss functions: In Corollary 4.6 we assumed that the range of the

loss function is [0, 1]. Prove that if the range of the loss function is [a, b] then
the sample complexity satisfies

[12log(2)(()<<|H|b-a2mUCHe,6mH(g/2,8).2



The Bias-Complexity Tradeoff

In Chapter 2 we saw that unless one is careful, the training data can mislead the
learner, and result in overfitting. To overcome this problem, we restricted the

search space to some hypothesis class ) )
H. Such a hypothesis class can be viewed

as reflecting some prior knowledge that the learner has about the task — a belief

that one of the members of the class His a low-error model for the task. For

example, in our papayas taste problem, on the basis of our previous experience
with other fruits, we may assume that some rectangle in the color-hardness plane
predicts (at least approximately) the papaya’s tastiness.

Is such prior knowledge really necessary for the success of learning? Maybe
there exists some kind of universal learner, that is, a learner who has no prior
knowledge about a certain task and is ready to be challenged by any task? Let
us elaborate on this point. A specific learning task is defined by an unknown
distribution

h:

X =Y, whose risk, LD(h), is small enough. The question is therefore whether
there exist a learning algorithm A and a training set size m, such that for every
distribution

D over X x Y, where the goal of the learner is to find a predictor

D, if A receives m i.i.d. examples from D, there is a high chance it
outputs a predictor h that has a low risk.

The first part of this chapter addresses this question formally. The No-Free-
Lunch theorem states that no such universal learner exists. To be more precise,
the theorem states that for binary classification prediction tasks, for every learner
there exists a distribution on which it fails. We say that the learner fails if, upon
receiving i.i.d. examples from that distribution, its output hypothesis is likely
to have a large risk, say,

> 0.3, whereas for the same distribution, there exists
another learner that will output a hypothesis with a small risk. In other words,
the theorem states that no learner can succeed on all learnable tasks — every
learner has tasks on which it fails while other learners succeed.

Therefore, when approaching a particular learning problem, defined by some
distribution
D, we should have some prior knowledge on D. One type of such prior
knowledge is that
D comes from some specific Parametric family of distributions.
We will study learning under such assumptions ldder on in Chapter 24. Another

Lyn%e ?ia%”pnr kaoé’;’]ﬁg%gao:i D, which we assumed when defining the PAC learning
model, is that theré exists hin som&Prederiedshy|sstHeeistetagshaiBen-David
Published 2014 by Cambridge University Press. H h that
Personal use only. Not for distribution. Do not post. » Suc a
lease link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
D(h) = 0. A softer type of prior knowledge on is assuming that minh&H LD(h)
is small. In a sense, this weaker assumption on is a prerequisite for using the
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agnostic PAC model, in which we require that the risk of the output hypothesis

will not be much larger than minh
€H LD(h).
In the second part of this chapter we study the benefits and pitfalls of using
a hypothesis class as a means of formalizing prior knowledge. We decompose

the error of an ERM algorithm over a class
H into two components. The first
component reflects the quality of our prior knowledge, measured by the minimal

risk of a hypothesis in our hypothesis class, minh €H LD(h). This component is

also called the approximation error, or the bias of the algorithm toward choosing

a hypothesis from H. The second component is the error due to overfitting,

which depends on the size or the complexity of the class
H and is called the
estimation error. These two terms imply a tradeoff between choosing a more

complex H (which can decrease the bias but increases the risk of overfitting)

or a less complex

The No-Free-LumcfariénanigRimcrease the bias but decreases the potential
overfitting).

In this part we prove that there is no universal learner. We do this by showing
that no learner can succeed on all learning tasks, as formalized in the following
theorem:

theorem 5.1 (No-Free-Lunch) Let A be any learning algorithm for the task

of binary classification with respect to the 0 _ 1 loss over a domain X. Let m

be any number smaller than
[X|/2, representing a training set size. Then, there
exists a distribution
D over X x {0,1} such that:
1. There exists a function f :
X = {0, 1} with LD(f) = 0.
2. With probability of at least 1/7 over the choice of S
Dm we have that
L
D(A(S)) = 1/8.
This theorem states that for every learner, there exists a task on which it fails,

even though that task can be successfully learned by another learner. Indeed, a
trivial successful learner in this case would be an ERM learner with the hypoth-

esis class H = {f}, or more generally, ERM with respect to any finite hypothesis

class that contains f and whose size satisfies the equation m
> 8 log(7|H|/6) (see
Corollary 2.3).

Proof LetCheasubsetof
X of size 2m. The intuition of the proof is that
any learning algorithm that observes only half of the instances in C has no
information on what should be the labels of the rest of the instances in C.
Therefore, there exists a “reality,” that is, some target function f, that would
contradict the labels that A(S) predicts on the unobserved instances in C.
Note that there are T = 22m possible functions from C to
{0, 1}. Denote these
functions by f1,...,fT. For each such function, let
Di be a distribution over
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C « {(,) 1}deﬁned by
{1/1Clify=f(x)D{x,y}ii(())=0otherwise.

That is, the probability to choose a pair (x,y) is 1/
[C] if the label y is indeed
the true label according to fi, and the probability is 0 if y
) 6= fi(x). Clearly,
D(f)=0.ii
We will show that for every algorithm, A, that receives a training set of m

examples from C x{0, 1} and returns a function A(S) : C - {0, 1}, it holds that

max E [L

€ ii[T]S Dmi D(A(S)]z1/4. (5.1)

Clearly, this means that for every algorithm, A’, that receives a training set of m

examples from — y .1q 1} there exist a function f : X - {0, 1} and a distribution

D over X x {0, 1}, such that LD(f) = 0 and

E[LA
DES))121/4. (5.2)S
It is easy to verify that the preceding suffices for showing that P[L A’
D((S))2
1/8]
> 1/7, which is what we need to prove (see Exercise 1).

We now turn to proving that Equation (5.1) holds. There are k = (2m)m
possible sequences of m examples from C. Denote these sequences by S1, .. ., Sk.
Also,ifS=(x,...,x)w Sij 1 medenoteby
E jXhe sequence containing the instances
inBlabebedbythefunctiofSij ni,namely,

) ) ) j = ((x1, fi(x1)), . .., (xm, fi(xm))). If
thangghebfiagtmtisat “maximum” is larger than “average” and that “average” is
larger than “minimum,” wihatA Si,...,Siihepagssibletrainingsetscanreceivearelk,
511n§ all these training Sets have the same pRobability of being sampled. Therefore,
k

TkTk11maxL(A(Si))=L((SiDA)) EkijDTkiji{T]j=1=1=1
[L(A(S))]= L(A(Si})). (5.3)

JS k 1 YijkT1yLDT=1 ’
Ko i (AS}))
YiF1lTImin
2LiD(( — (5.4)
€ iAS))).jIKk]Ti=1
&efﬁ’]ﬁﬁeﬁﬁm@!’;j = ( x1,...,xm Vl"')aNdﬂet bethe

examples in C that do not appear in . 2y, . Therefore, for every
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function h: C — {0,1} and every i we have

1
h(x)=6fi
b= 1i o2 (=60
SCp hvr)=6 fi(vr)]
>11[(2m
o Shvr)=6f(v)].ir
— (5.5)
>1 1[(2p
Hence, r=1
2 2
1
zTTpinLE(A(Sj))zlz[A(SiTiTpT)S/ryﬁfi(vr)]i=1i=1r=1
k1
= 1A(S L . .
=1 iz1 5 2p T j)(vr)=6fi(vr)]
.
>1-1min12[A(Si - - fvr )1 (5.6)
€ Tvr)=6i(r[p]i=1 .
Next, fix some r f,...,f TintoT/2

€ [p]. We can partition all the functions in 1 cCtd0 6=fi’ ()

disjoint pairs, where for a pair (fi, fi’) we have that for every S , it follows that
(S

cv ii’ifandonlyifzr.Sinceforsuc%apairwemusthaveS

jvkigh yields

1

BNV RSy °
Combining this with Equation (5.6), Equation (5.4), and Equation (5.3), we

obtain that Equation (5.1) holds, which concludes our proof. 0

No-Free-Lunch and Prior Knowledge

How does the No-Free-Lunch result relate to the need for prior knowledge? Let us

consider an ERM predictor over the hypothesis class )
H of all the functions f from

Xto
{0, 1}. This class represents lack of prior knowledge: Every possible function
from the domain to the label set is considered a good candidate. According to the
No-Free-Lunch theorem, any algorithm that chooses its output from hypotheses
in
H, and in partjcular the ERM predictor, will fail on some learning task.
Therefore, this class i? n?t PAC learnable, as formalized in the following corollary:

corollary 5.2 Let be an infinite domain set and let

H be the set of all
functions from
X1t00,1.Then, His not PAC learnable.
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Proof Assume,bywayofcontradiction,thattheclassislearnable.Choose some € <
1/8 and & < 1/7. By the definition of PAC learnability, there must be some
learning algorithm A and an integer m = m(g,8), such that for any data-generating

distribution over ) )
X x{0, 1}, if for some function f: X = {0, 1},

L

D(f) = 0, then with probability greater than 1 - 6 when A is applied to
samples S of size m, generated i.i.d. by
D, LD(A(S)) < €. However, applying
the No-Free-Lunch theorem, since
[X| > 2m, for every learning algorithm (arid
in particular for the algorithm A), there exists a distribution
D such that with
probability greater than 1/7 > 6, L

D(A(S)) > 1/8 > €, which leads to the
desired contradiction.

How can we prevent such failures? We can escape the hazards foreseen by the
No-Free-Lunch theorem by using our prior knowledge about a specific learning
task, to avoid the distributions that will cause us to fail when learning that task.
Such prior knowledge can be expressed by restricting our hypothesis class.

But how should we choose a good hypothesis class? On the one hand, we want
to believe that this class includes the hypothesis that has no error at all (in the
PAC setting), or at least that the smallest error achievable by a hypothesis from
this class is indeed rather small (in the agnostic setting). On the other hand,
we have just seen that we cannot simply choose the richest class - the class of
drrorciesomapbsgi@n domain. This tradeoff is discussed in the following
section.

To answer this question we decompose the error of an ERM H predictor into two

components as follows. Let hS be an ERM
H hypothesis. Then, we can write

L €H D

D(hS)=eapp+eestwhere:gapp=minL(h),eest=LD(hS)-gapp.(5.7)h
. The Approximation Error - the minimum risk achievable by a predictor

in the hypothesis class. This term measures how much risk we have
because we restrict ourselves to a specific class, namely, how much
inductive bias we have. The approximation error does not depend on the
sample size and is determined by the hypothesis class chosen. Enlarging
the hypothesis class can decrease the approximation error.

Under the realizability assumption, the approximation error is zero. In
the agnostic case, however, the approximation error can be large.1

1 Infact, it always includes the error of the Bayes optimal predictor (see Chapter 3), the
minimal yet inevitable error, because of the possible nondeterminism of the world in this
model. Sometimes in the literature the term approximation error refers not to

efainh L(h),butrathertotheexcesserroroverthatoftheBayesoptimalpredictor,

gasrgg%gjinh L (h) erp
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« The Estimation Error - the difference between the approximation error
and the error achieved by the ERM predictor. The estimation error results
because the empirical risk (i.e., training error) is only an estimate of the
true risk, and so the predictor minimizing the empirical risk is only an
estimate of the predictor minimizing the true risk.
The quality of this estimation depends on the training set size and
on the size, or complexity, of the hypothesis class. As we have shown, for
a finite hypothesis class, €est increases (logarithmically) with
[H| and de-
creases with m. We can think of the size of
H as a measure of its complexity.
In future chapters we will define other complexity measures of hypothesis
classes.

Since our goal is to minimize the total risk, we face a tradeoff, called the bias-

complexity tradeoff. On one hand, choosing, to be a very rich class decreases the

approximation error but at the same time might increase the estimation error,

as arich H might lead to overfitting. On the other hand, choosing H to be a

very small set reduces the estimation error but might increase the approximation
error or, in other words, might lead to underfitting. Of course, a great choice for
H is the class that contains only one classifier — the Bayes optimal classifier. But

the Bayes optimal classifier depends on the underlying distribution D. which we

do not know (indeed, learning would have been unnecessary had we known
D).

Learning theory studies how rich we can make

H while still maintaining rea-
sonable estimation error. In many cases, empirical research focuses on designing
good hypothesis classes for a certain domain. Here, “good” means classes for
which the approximation error would not be excessively high. The idea is that
although we are not experts and do not know how to construct the optimal clas-
sifier, we still have some prior knowledge of the specific problem at hand, which
enables us to design hypothesis classes for which both the approximation error
and the estimation error are not too large. Getting back to our papayas example,
we do not know how exactly the color and hardness of a papaya predict its taste,
but we do know that papaya is a fruit and on the basis of previous experience

with other fruit we conjecture that a rectangle in the color-hardness space may
belamapaaredictor.

The No-Free-Lunch theorem states that there is no universal learner. Every
learner has to be specified to some task, and use some prior knowledge about
that task, in order to succeed. So far we have modeled our prior knowledge by
restricting our output hypothesis to be a member of a chosen hypothesis class.
When choosing this hypothesis class, we face a tradeoff, between a larger, or
more complex, class that is more likely to have a small approximation error, and a
more restricted class that would guarantee that the estimation error will
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be small. In the next chapter we will study in more detail the behavior of the
estimation error. In Chapter 7 we will discuss alternative ways to express prior
knowledge.

Bibliographic Remarks

(Wolpert & Macready 1997) proved several no-free-lunch theorems for optimiza-
tion, but these are rather different from the theorem we prove here. The theorem
we prove here is closely related to lower bounds in VC theory, as we will study in
the next chapter.

Exercises

1. Prove that Equation (5.2) suffices for showing that P[L D(A(S)) = 1/8] = 1/7.
Hint: Let © be a random variable that receives values in [0,1] and whose

expectation satisfies E[6] >1/4. Use Lemma B.1 to show that P[B > 1/8] >
1/7.
2. Assume you are asked to design a learning algorithm to predict whether pa-
tients are going to suffer a heart attack. Relevant patient features the al-
gorithm may have access to include blood pressure (BP), body-mass index
(BMI), age (A), level of physical activity (P), and income (I).
You have to choose between two algorithms; the first picks an axis aligned
rectangle in the two dimensional space spanned by the features BP and BMI
and the other picks an axis aligned rectangle in the five dimensional space
spanned by all the preceding features.
1. Explain the pros and cons of each choice.
2. Explain how the number of available labeled training samples will affect
your choice.
3. Prove that if
IX| = km for a positive integer k > 2, then we-can replace
the lower bound of 1/4 in the No-Free-Lunch theorem with k-1 1

-12k=22k.
Namely, let A be a lelaMng algorithm for the task of binary classification. Let

m be any number smaller fhah 7‘k,{representing a training set size. Then,
theteexistsadistribution over 0,1 X—=>{}

} such that: > = —
Thereexistsafunctionf: 0,1withL
D(f) = 0.

E[(O)]11S

DmLDAS 2 2k.
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The VC-Dimension

In the previous chapter, we decomposed the error of the ERM H rule into ap-

proximation error and estimation error. The approximation error depends on
the fit of our prior knowledge (as reflected by the choice of the hypothesis class
H) to the underlying unknown distribution. In contrast, the definition of PAC
learnability requires that the estimation error would be bounded uniformly over
all distributions.

Our current goal is to figure out which classes H are PAC learnable, and to

characterize exactly the sample complexity of learning a given hypothesis class.
So far we have seen that finite classes are learnable, but that the class of all
functions (over an infinite size domain) is not. What makes one class learnable
and the other unlearnable? Can infinite-size classes be learnable, and, if so, what
determines their sample complexity?

We begin the chapter by showing that infinite classes can indeed be learn-
able, and thus, finiteness of the hypothesis class is not a necessary condition for
learnability. We then present a remarkably crisp characterization of the family
of learnable classes in the setup of binary valued classification with the zero-one
loss. This characterization was first discovered by Vladimir Vapnik and Alexey
Chervonenkis in 1970 and relies on a combinatorial notion called the Vapnik-
Chervonenkis dimension (VC-dimension). We formally define the VC-dimension,
provide several examples, and then state the fundamental theorem of statistical
learning theory, which integrates the concepts of learnability, VC-dimension, the
ERM rule, and uniform convergence.

Infinite-Size Classes Can Be Learnable

In Chapter 4 we saw that finite classes are learnable, and in fact the sample
complexity of a hypothesis class is upper bounded by the log of its size. To show
that the size of the hypothesis class is not the right characterization of its sample
complexity, we first present a simple example of an infinite-size hypothesis class
that is learnable.

Example6.1 Let

H be the set of threshold functions over the real line, namely,
H={ha:a € R}, where ha:R — {0, 1} is a function such that ha(x) = 1[x<al.
To remind the reader, 1[x<a] is 1 if x < a and 0 otherwise. Clearly, His of infinite
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size. Nevertheless, the following lemma shows that | is learnable in the PAC
model using the ERM algorithm.
Lemma 6.1 Let H be the class of thresholds as defined earlier. Then, H is

%C(lzee)\rnable, using the ERM rule, with sample complexity of m €,9 -
gl2)e s

Proof a Let ?beathresholdsuchthatthehypothesish?(x)=1[x<a?] achieve
L ?h D )=0.LetDxbethemarginaldistributionoverthedomain xs and
a <a <a let
0 1besuchthat
P[x D D

€(a,a?0)]=P[x&E(a?,al)]=£.xxxx

€ Mass € Mass

ao a’ a1
(If D ?x(-00,a)<ewesetal=-ccandsimilarlyforal).Givenatrainingset
S, let b0 = max

{x:(x,1) € Stand bl =min{x: (x, 0) € S} (if no example in S
is positive we set b0 =
-0 and if no example in S is negative we set bl = ).
Let bS be a threshold corresponding to an ERM hypothesis, hS, which implies

that bS € (b0,b1). Therefore, a sufficient condition for LD(hS) < € is that both
b0

> a0 and bl < al. In other words,

P[L

Dhsr elsP[b0<a0Vbil>all,S

and using the union bound we can bound the preceding by

PIL

DS elsR[bHga0]+P[bl>al1].(6.1)S

The event b0 < a0 happens if and only if all examples in S are not in the interval

(a *0,a),whoseprobabilitymassisdefinedtobeg,namely,

P[b]=P?me-emO0<al] O

Ve ¥) &S xE6(a0,a)]=(1-¢€)<.S

?.iﬂcﬁe\\y&_aﬂ?weenn%I>Olﬁg(2/6)/s it follows that the equation is at most 6/2.

In the same way It Is easy to see that PS Dmib1 > al] < §/2. Combining with
. l .

Prationtherbtite AR AL HiRARISss of H is a sufficient condition for learn-

ability, it is not a necessary condition. As we will show, a property called the
VC-dimension of a hypothesis class gives the correct characterization of its learn-
ability. To motivate the definition of the VC-dimension, let us recall the No-Free-
Lunch theorem (Theorem 5.1) and its proof. There, we have shown that without
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restricting the hypothesis class, for any learning algorithm, an adversary can
construct a distribution for which the learning algorithm will perform poorly,
while there is another learning algorithm that will succeed on the same distri-

bution. To do so, the adversary used a finite set C ) )
C X and considered a family

of distributions that are concentrated on elements of C. Each distribution was

derived from a “true” target function from C to {0,1}. To make any algorithm

fail, the adversary used the power of choosing a target function from the set of
%l a?§sible functions from C to

When considering PAC learnability of a hypothesis class
H, the adversary
is restricted to constructing distributions for which some hypothesis h
€ H
achieves a zero risk. Since we are considering distributions that are concentrated

on elements of C, we should study how H behaves on C, which leads to the

following definition.

definition 6.2 (Restriction of
HtoC) LetHbeaclassoffunctionsfromX
to

{0, 1}and let C ={c1, ..., cm} C X. The restriction of H to C is the set of
functions from C to
{0, 1} that can be derived from H. That is,

HC = {(h(c1),...,h(cm)) : h € H},
where we represent each function from C to
{0, 1} as a vector in {0, 1}|C|.
If the restriction of
Hto Cis the set of all functions from C to {0,1}, then
we say that
H shatters the set C. Formally:
definition 6.3 (Shattering) A hypothesis class
H shatters a finite set C C X
if the restriction of
H to Cis the set of all functions from C to {0,1}. That is,
|[H=2]|C|C].

Example6.2 Let )
H be the class of threshold functions over R. Take a set

C =

{c1}. Now, if we take a = c1 + 1, then we have ha(cl) = 1, and if we take
a=cl Let peahz}pothesisclassoffunctionsfrom to.Let
be a trajping setsHEHES REIRAtre Ll diE g ggpCHC 15 the set of all functions

CXofsize thatis
ﬂw%ttered by {0, 1}, and H shatters C. Now take a set C = {c1, c2}, where c1 < c2.
0

e H . . e
ver € Hcan a@cJ@ﬁﬁJPWé‘Ya'ﬁ@ﬁP,ﬁ‘ﬁﬁ?‘?%%‘éEuée%?h%‘&%&&“ﬁ%%‘%k‘?@n@
thctabel 0 to C1 % A55RD s el O 0 Sa s e DS e B s aota oSty
bremdadel/7querthaebaicepdS avphagethatte C is not shattered by H.
D(A(S@eﬁﬂ’/ngack to the construction of an adversarial distribution as in the proof
of the No-Free-Lunch theorem (Theorem 5.1), we see that whenever some set C
is shattered by
H, the adversary is not restricted by H, as they can construct
a distribution over C based on any target function from C to
{0, 1}, while still
maintaining the realizabilitv assumntion This immediatelv vields:
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Corollary 6.4 tells us that if H shatters some set C of size 2m then we cannot

learn

H using m examples. Intuitively, if a set C is shattered by H, and we
receive a sample containing half the instances of C, the labels of these instances
give us no information about the labels of the rest of the instances in C — every
possible labeling of the rest of the instances can be explained by some hypothesis

in . .
H'slgmtla%%%pcglr%%[ain every phenomenon, his explanations are worthless.

This leads us directly to the definition of the VC dimension.

definition 6.5 (VC-dimension) The VC-dimension of a hypothesis class
H,
denoted VCdim(
H), is the maximal size of a set C C X that can be shattered
by
H. If H can shatter sets of arbitrarily large size we say that H has infinite
VC-dimension.

fediregieonsequence of Corollary 6.4 is therefore:

em6.6 Let o . . . .
Shiesf H has an infinite VC-dimension, for any training set size m,{[here

exists a shattered set of s'ii@%ﬁl?llfr?& ﬂfé@éﬁ'ﬁ’?%ﬁb%@ﬁ?%wbl N, 14 Is not PAC

We shall see later in this chapter that the converse is also true: A finite VC-

dimension guarantees learnability. Hence, the VC-dimension characterizes PAC
learnability. But before delving into more theory, we first show several examples.

Examples

In this section we calculate the VC-dimension of several hypothesis classes. To

show that VCdim(
H) = d we need to show that

1. There exists a set C of size d that is shattered by
H.
2. Every set C of size d + 1 is not shattered by

H.
Threshold Functions

Let | petheclassofthresholdfunctionsoverR.RecallExample6.2,where  we have

shown that for an arbitrary set C =
{c1}, H shatters C; therefore
VCdim() 1'._{1%havealsoshownthatforanarbitrarysetC= cl,c2
H H } where
cl

<c2, doesnotshatterC.WethereforeconcludethatVCdim()=1.
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Intervals
Let H be the class of intervals over R, namely, H=1{ha,b : a,b € R,a < b},
where ha,b : R

—{0,1} is a function such that ha,b(x) = 1[x&E(a,b)]. Take the set
C=

{1,2}. Then, H shatters C (make sure you understand why) and therefore
VCdim(
H) > 2. Now take an arbitrary set C = {c1,c2,c3} and assume without
loss of generality that c1
< c2 < c3. Then, the labeling (1, 0, 1) cannot be obtained

nipterval fore
R&% Ané%éla F?é]éjtw]egrl%s H does not shatter C. We therefore conclude that

Védimbe the class of axis aligned rectangles, formally:
H) = 2.
H={h(a:a<and1,a2,babl1,b2)121< 2}

where
{lifal<x1<a2andbl<x2<b2h(a(,x)=1,a2,b1,bx2)12(6.2)0otherwise

We shall show in the following that VCdim(
H) = 4. To prove this we need
to find a set of 4 points that are shattered by
H, and show that no set of 5
points can be shattered by
H. Finding a set of 4 points that are shattered is
easy (see Figure 6.1). Now, consider any set C
C R2 of 5 points. In C, take a
leftmost point (whose first coordinate is the smallest in C), a rightmost point
(first coordinate is the largest), a lowest point (second coordinate is the smallest),
and a highest point (second coordinate is the largest). Without loss of generality,

denote C = {c1,...,c5} and let c5 be the point that was not selected. Now,
define the labeling (1,1,1,1,0). It is impossible to obtain this labeling by an
axis aligned rectangle. Indeed, such a rectangle must contain c1,...,c4; but in
this case the rectangle contains c5 as well, because its coordinates are within

the intervals defined by the selected points. So, C is not shattered by H, and
therefore VCdim(H) = 44 °

cl (o} (o)
[ J o

e OR

Figure 6.1 Left: 4 points that are shattered by axis aligned rectangles. Right: Any axis
aligned rectangle cannot label c5 by 0 and the rest of the points by 1.
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6.3.5

6.4

The VC-Dimension

Finite Classes

Let 1 pe a finite class. Then, clearly, for any set C we have |HC| < |H| and thus C
cannot be shattered if

[H| < 2|C|. This implies that VCdim(H) < log2(|H|). This
shows that the PAC learnability of finite classes follows from the more general

statement of PAC learnability of classes with finite VC-dimension, which we shall

see in the next section. Note, however, th ‘_'the VC-dimension of a finite class H

can be significantly smaller than log2(). For example, let X = {1,...,k},

for some integer k, and consider the class of Hweshold functions (as defined in

Example 6.2). Then, H
| ||H| =k but VC(Hm() = 1. Since k can be arbitrarily

large, the gap between log2() and VCdim() can be arbitrarily large.

VCngmengslgn and t%e ngmg%er of Parang()eters yarg

In the previous examples, the VC-dimension happened to equal the number of

parameters defining the hypothesis class. While this is often the case, it is not

always true. Consider, for example, the domain .
X =R, and the hypothesis class

H={hB6:0 €R}wherehb: O,1}isde>1<'in?q_lé{yh9(x)=d0.55in(ex)e.1t

is possible to prove that VCdim(y) = o, namely, for every d, one can find d

points that are shattered by (see Exercise 8).

The Fundamental Theorem of PAC learning

We have already shown that a class of infinite VC-dimension is not learnable. The
converse statement is also true, leading to the fundamental theorem of statistical
learning theory:

theorem 6.7 (The Fundamental Theorem of Statistical Learning) Let bea
hypothesisclassoffunctionsfromadomain  to  andletthelossfunction  bethe
X s&aheh,thefollowingareequivalent:

9. hastheuniformconvergenceproperty.

& Any ERM rule is a successful agnostic PAC learner for
3. ihgnosticPAClearnable.

4.isPAClearnable.

5. Any ERM rule is a successful PAC learner for
H.H

PhRIIIILE Ve dHBSRSIONs given in the next section.
Not only does the VC-dimension characterize PAC learnability; it even deter-
mines the sample complexity.

theorem 6.8 (The Fundamental Theorem of Statistical Learning — Quantita-

p'v s sion) Let beahypothesisclassoffunctionsfromadomain x {3
antg)le’tt elossfunctionbethe loss.Assumethat H
Then, there are absolute constants C,C such that: -1 vedim()=d<.

12
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1. H has the uniform convergence property with sample complexity

d+ lo%(l /0) uc d + log(1/0)
C Dbt = A Sl
C1 < < e m 8,6 2

is agnostic PAC learnable with sample complexity

o, +log1/5)

2. H
d +log(1/d)

<e2H m (g,8)< C2 =

By is PAC learnable with sample complexity

d+log(1/6) dog(1/€)+log(1/8)
g:lmH(e,é)sCZS €
The proof of this theorem is given in Chapter 28.

Remark 6.3 We stated the fundamental theorem for binary classification tasks.
A similar result holds for some other learning problems such as regression with
the absolute loss or the squared loss. However, the theorem does not hold for
all learning tasks. In particular, learnability is sometimes possible even though
the uniform convergence property does not hold (we will see an example in
Chapter 13, Exercise 2). Furthermore, in some situations, the ERM rule fails
but learnability is possible with other learning rules.

Proof of Theorem 6.7

We have already seen that 1
3

— 2 in Chapter 4. The implications 2 = 3 and

- 4 are trivial and so is 2 = 5. The implications 4 = 6 and 5 — 6 follow from
the No-Free-Lunch theorem. The difficult part is to show that 6
— 1. The proof
is based on two main claims:

« If VCdim(H) = d, then even though H might be infinite, when restricting it

to afinite set C CX,its“effective”size,|H| dC,isonlyO(|C|).Thatis,
the size of

HC grows polynomially rather than exponentially with [C|. This

claim is often referred to as Sauer’s lemma, but it has also been stated and

proved independently by Shelah and by Perles. The formal statement is
given in Section 6.5.1 later.
« In Section 4 we have shown that finite hypothesis classes enjoy the uniform
| (fenvergence property. In Section 6.5.2 later we generalize this result and
show that uniform convergence holds whenever the hypothesis class has a
“small effective size.” By “small effective size” we mean classes for which

BpS AR g Growth Funcion
We déﬁned the notion of shattering, by considering the restriction of H to a finite

set of instances. The growth function measures the maximal “effective” size of
H on a set of m examples. Formally:
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definition 6.9 (Growth Function) Let
growth function of

H, denoted TH : N = N, is defined as RN

T

Bl =max HC .C

In words, TH(m) is the number of different functions from a set C of size m to
{0,1} that can be obtained by restricting H to C.

Obviously, if VCdim(

H be a hypothesis class. Then the

H)=dthenforanym<dwehavet mH(m)=2.In
such cases,

H induces all possible functions from C to {0, 1}. The following beau-
tiful lemma, proposed independently by Sauer, Shelah, and Perles, shows that
when m becomes larger than the VC-dimension, the growth function increasesH <
polyremially rather than exponentially with m.

lem m% 6.10 (Sauer-Shelah-Perles)

SRebhRIRIsR HESWRA Cdim0 dd<. Then, forallm, tmmH( <i=0i.Inparticular,ifm>d+1thentdH
To prove the lemma it suffices to prove the following stronger claim: For any C=
{c1,...,cm}we have

V' H,|HC|<|{BEC:HshattersB}|. (6.3)

The reason why Equation (6.3) is sufficient to prove the lemma is that if VCdim() d

then no set whose size is larger than d is shattered by H <
H and therefore
d

%C:HshattersB
i | { <

SOm.i=0
When m > d + 1 the right-hand side of the preceding is at most (em/d)d (see
Lemma A.5 in Appendix A).

We are left with proving Equation (6.3) and we do it using an inductive argu-

ment. For m = 1, no matter what o ) )
H is, either both sides of Equation (6.3) equal

1 or both sides equal 2 (the empty set is always considered to be shattered by
H). Assume Equation (6.3) holds for sets of size k < m and let us prove it for
sets of size m. Fix

HandC={c,...,c} C'1 m.Denote ={c2,...,cm}andin
addition, define the following two sets:
EHV e H}

0

{(y2,...,ym):(0,y2,...,ym) C (1,y2,....ym) C,
Yf: {(y2,...’,‘ym):(02ymé@|.(ﬂ@¥'\_2,...,ym)

It is easy to verify that Y Y | 1 i Additionally, since YO =
|[HC| =] O]+ H HC’, using
the induction assumption (applied on apF 9’% we have that

H |<|{ €6 AH H
lY|= EJOC’BC:i-lshattersB = B C:cl1 B shattersB .
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Nextydgfige
H'={h€H:3h'€Hs.t.(1-h'(c' '1),h(c2),...,h(cm))
= (h(cl), h(c2), ..., h(cm) }

namely,

H’ contains pairs of hypotheses that agree on C” and differ on c1. Using
this definition, it is clear that if
H’ shatters a set B & C’ then it also shatters
the set B

U{c1} and vice versa. Combining this with the fact that Y1 = H’C’ and
using the inductive assumption (now applied on
H”and C’) we obtain that

|[Y '"1]|=|HC"|<|{B&C'":H'shattersB}|=|{B&SC'":H'shattersBU{c1}}]|

{BEC:c’1€B AHshattersB}|<|{B&C:c1&B AHshattersB}|.
Overall, we have shown that

[HC| = [YO[ + [Y1]
<|{BEC:c1€6BAHshattersB}|+|{BSC:c1EB AHshattersB}|

={ C C: H shatters B}|

6.5.2 Hﬂlg%r%gangggg%;&goor Classes of Small Effective Size

In this section we prove that if H has small effective size then it enjoys the

uniform convergence property. Formally,

theorem6.11 beacl&dsshdlett
D andevery & H be its growth function. Then, for
every §(0uB haiteprobabilityofatleastl
4+ log(tm v
|- |< H(2))LDhLS(h) vV .62m
Before proving the theorem, let us first conclude the proof of Theorem 6.7.

— O over the choice of

Proof of Theorem 6.7 It suffices to prove tjwat if the VC-dimension is finite then
the uniform convergence property holds. We will prove that

<16d16d16dlog(2e/d)mUCH(g;6)4log+.(6€)2(5€)2(8€) 22—

From Sauer’s lemma we have that for m\/> dt o
H(2m) < (2em/d)d. Combining

this with Theorem 6.11 we obtain that with probability of at least 1

-5,

4+ dlog(2em/d) h Y —

[LS (h) -
VLD()|<V.82mForsimplicityassumeth&@(2)>4;hence,

| - 1 2dlog(2 )LS(h) LD() h _ _ em/d

| <& m
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To ensure that the preceding is at most € we need that

>2dlog(m)2dlog(2e/d)m+.(6€)2(5e)2—

Standard algebraic manipulations (see Lemma A.2 in Appendix A) show that a
sufficient condition for the precedin

(stoho)ldisthat> 2d 2d 4dlog(2e/d)m des—+ .(58)248€)2-45€)2

O

Remark 6.4 The upper bound on mUC H we derived in the proof Theorem 6.7
is not the tightest possible. A tighter analysis that yields the bounds given in
Theorem 6.8 can be found in Chapter 28.

Proof of Theorem 6.11 *
We will start by sho

] v
[wingthat4+log(t(2m))Esup|HLD(h)-LS(h)|<V.(6.4)S Dmh&H2m

Since the random variable suph . .
€H |LD(h) - LS(h)| is nonnegative, the proof of
the theorem follows directly from the preceding usind Markov’s inequality (see

Section B.1). I
To bound the left-hand side of Equation (6.4) we first note that for every
h

additional i

€H,wecanrewriteL(h)=E’[L(h)],whereS’=".,z’DS DmS’z1,..misan

[.i.d.sample.Therefore], | E | supLD(h)LS(h)=EsupELS’(h)LS(h)

[ ]I-]-.S Dmh&HS Dmh&HS” DmAgeneralizatio
| | nofthetriangleinequalityyields

I I E[S’()- | LhLS(h)] | <E|L’(h)-L(h)|,S"SS DmS’ Dmandthefactthatsupermumofexpectationiss

mum yields

supk

8/ 00-LS(R)Is Euple 0-L (.

Formally, the previous two inequalities follow from Jensen’s inequality. Combin-
ing all we [

[obtain ] ]EsuplLD(h)—LS(h)IsEsupILS’(h)—LSkh)IS Dn|HhIEH S, Dmh&H |
Team o i ]
iREHI=1

(6.5)
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The expectation on the right-hand side is over a choice of two i.i.d. samples

S=z,...,zandS’ " z’1 m =z1,...,m.Sinceallofthese2mvectorsarechosen

i.i.d., nothing will change if we replace the name of the random vector zi with the
nameoftherandomvectorz’”’

i. If we do it, instead of the term (" (h, zi) —(h, zi))

in Equation (6.5) we will have the term
-(* (h,z’)-" (h,zi)).Itfollowsthatfor
every o |

I
E {x1}m we have that Equ:gpqn (6:5) equals 1]

'y |
Es p ,2%)
g] %#h'EHml =1
Since this holds for every o[ l

| % {x1}m, it also holds iff we samblé J}ach component
of o uniformly at random from the umiform distribution over

{#1}, denoted U+.
Hence, Equation (6.5) also Ez&uﬁls I

1 s m | 1
E Esup o h,zi(()" (h,2), o
USBi l?o m'm+h&eHmi=1

and by the linearity of expedtation it also equals | |

) |3 m | 1

Es

_Ii,)z(tgjﬁ (ngUm+hé|+|m| 1 I

Next, fix Sand S/, and let C Iaéthe instances appearing in S ar|1d|51. Then, we
can take the supremum 2 —

[onlyoverh&EH " C.Ther" efore,mlEsuTjo’i((h,zi)—(h,z%)o Um+h&Hmi=1
(

max o h,z'i(() " (h,2).
mi-ic mM=*Ci=1 ()
EH1m Fixsomei‘nanddenoteez’Chmizloi(‘ (h,zi)-" (h,zi)).SinceE[Bh]=0
and Bh is an average of independent variables, each of which takes values in

[
-1, 1], we have by Ho[affding’s inequality ’iha\} for every p > 0,

Pl J
[B]>pl<2exp-2mp2h.

Applying the union ppound over h

€ HC, we obtain that for apy p > 0,

Pmax

EAd >p<2|HC|exp-2mp2h.h

Finally, LemmaA.4in A

[ppendixAtellsusthattheprecedingimplies4+Emax|Bh|<vVlog(|HC|).hEHC2m

ﬁomb| slhc\JNV\i/tnhtihhaetdeﬁmtion of T

4+ log(tm

FHWR@hDém—LS(h)IsV.S
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6.6

6.7

6.8

The VC-Dimension

Summary

The fundamental theorem of learning theory characterizes PAC learnability of
classes of hinary classifiers using VC-dimension. The VC-dimension of a class is a
combinatorial property that denotes the maximal sample size that can be
shattered by the class. The fundamental theorem states that a class is PAC learn-
able if and only if its VC-dimension is finite and specifies the sample complexity
required for PAC learning. The theorem also shows that if a problem is at all
learnable, then uniform convergence holds and therefore the problem is
learnable using the ERM rule.

Bibliographic remarks

The definition of VC-dimension and its relation to learnability and to uniform
convergence is due to the seminal work of Vapnik & Chervonenkis (1971). The
relation to the definition of PAC learnability is due to Blumer, Ehrenfeucht,
Haussler & Warmuth (1989).
Several generalizations of the VC-dimension have been proposed. For exam- ple,
the fat-shattering dimension characterizes learnability of some regression
problems (Kearns, Schapire & Sellie 1994, Alon, Ben-David, Cesa-Bianchi &
Haussler 1997, Bartlett, Long & Williamson 1994, Anthony & Bartlet 1999), and
the Natarajan dimension characterizes learnability of some multiclass learning
problems (Natarajan 1989). However, in general, there is no equivalence between
learnability and uniform convergence. See (Shalev-Shwartz, Shamir, Srebro &
Sridharan 2010, Daniely, Sabato, Ben-David & Shalev-Shwartz 2011).
Sauer’s lemma has been proved by Sauer in response to a problem of Erdos
(Sauer 1972). Shelah (with Perles) proved it as a useful lemma for Shelah’s
theory of stable models (Shelah 1972). Gil Kalai tells1 us that at some later time,
Benjy Weiss asked Perles about such a result in the context of ergodic theory, and
Perles, who forgot that he had proved it once, proved it again. Vapnik and
Chervonenkis proved the lemma in the context of statistical learning theory.

Exercises

1. Show the following monotonicity property of VC-dimension: For every two

hypothesis classes if )
H” € H then VCdim(H") < VCdim(H).

2. Given some finite domain set,
X, and a number k < |X|, figure out the VC-
dimension of each of the following classes (and prove your claims):

1 . .
. ) , HX=k={h&€{0,1}X:|{x:h(x)=1}|=k}.Thatis,thesetofallfunctions
that S8l e VAl 1t -éiH&ﬁQ&P@e}({J@ﬁ%&ts of
al- combinatorics- iii- some- basic- theorems

X extre
1


http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
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2. KO 1) - {x:h(x)=1}| <kor|{x:h(x) =0} <k}.
3.Letx be the Boolean hypercube

a parity function {0, 1In. ForasetI & {1, 2, ..., n} we define
{Oll}hI as follows. On a binary vector x = (x1,x2,...,xn)

, () €N

hI(x)= ximod2. &

i(1'ha’[ is, hI computes parity of bits in I.) What is the VC-dimension of the
FlAss AR ot Ragdtyfupctiongy,
4. We proved Sauer’s lemma by proving that for every class
H of finite VC-
dimension d, and every subset A of the domain,
|HA| < |{@BA : H shatters By | < 2d (=.pA)| .
4 i

Show that there are cases in which the previous two inequalities are strict

(namely, the . .
< can be replaced by <) and cases in which they can be replaced

by equalities. Demonstrate all four combinations of = and <.

5.VC-dimension of axis aligned rectangles in Rd: Let
Hdrecbetheclassof

axis aligned rectangles in Rd. We have already seen that VCdim(
H2rec) = 4.
Prove that in general, VCdim(
Hdrec)=2d.
6. VC-dimension of Boolean conjunctions: Let
HdconbetheclassofBoolean
conjunctions over the variables x1, . . ., xd (d
> 2). We already know that this
class is finite and thus (agnostic) PAC learnable. In this question we calculate

Vﬁﬂll%(n).

1. Show that

|[Hd dcon|<3+1.

2. Conclude that VCdim(
H) < d log 3.

3. Show that

Hdconshattersthesetofunitvectors{ei:i<d}.
4. (**) Show that VCdim(
Hdcon)<d.
Hint: Assume by contradiction that there exists a set C =
{c1,...,cd+1}
that is shattered by

Hdcon.Lethl,...,h dd+1behypothesesinHconthat
satisfy

{0i=jVi,j€[d+1],hi(cj)=1otherwise

Foreachi
€ [d + 1], hi (or more accurately, the conjunction that corre-
sponds to hi) contains some literal "i which is false on ci and true on cj
for each | 6=i. Use the Pigeonhole principle to show that there must be a
pairi<j

<d+ 1suchthat "iand "juse the same xk and use that fact
to derive a contradiction to the requirements from the conjunctions hi, hj.

5. Consider the class Hd dmeconofmonotoneRooleanconitinctioneoveri 11
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Asin Hdcon, the empty conjunction is interpreted as the all-positive hy-
pothesis. We augment
Hdmcwithth h-oneall-negativehypothesis.Show
that VCdim(
Hdmcon)=d.
7. We have shown that for a finite hypothesis class
H, VCdim(H) < blog(|H|)c.
However, this is just an upper bound. The VC-dimension of a class can be
much lower than that:
1. Find an example of a class
H of functions over the real interval X =[0,1]
such that
H is infinite while VCdim(H) = 1.
2. Give an example of a finite hypothesis class
H over the domain X = [0, 1],
where VCdim(
H) = blog2(|H])c.
8. (*) It is often the case that the VC-dimension of a hypothesis class equals (or
can be bounded above by) the number of parameters one needs to set in order
to define each hypothesis in the class. For instance, if
H is the class of axis
aligned rectangles in Rd, then VCdim(
H) = 2d, which is equal to the number
of parameters used to define a rectangle in Rd. Here is an example that shows
that this is not always the case. We will see that a hypothesis class might
be very complex and even not learnable, although it has a small number of
parameters.
Consider the domain
X =R, and the hypothesis class

H={x—>7dsin(Bx)e:0 €ER}

(here, we take
d-1e = 0). Prove that VCdim(H) = co.
Hint: There is more than one way to prove the required result. One option

is by applying the following lemma: If 0.x1x2x3 .. ., is the binary expansion of
X
€ (0, 1), then for any natural number m, dsin(2mmnx)e = (1 - xm), provided
that
dk >ms.t. xk = 1.
9. Let

H be the class of signed intervals, that is, —
H=1{ha,b,s:a<b,s &€ {-1, 1}} wh

{eresifx&[a,blha,b,s(x)=H

-sifx€/[a,b] -
Calculate VCdim( H H

H). H
10. Let

H be a class of functions from X to {0,1}.
1. Prove that if VCdim(

H) > d, for any d, then for some probability distri-
bution
D over X x {0, 1}, for every sample size, m,

>d-mE[LD(A(S))IminLD(h)+S
Dm h&eH 2d
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1. Prove that

YA iy <adlog(2d)+2log(r).
Hint: Take a set of k examples and assume that they are shattered by

the union class. Therefore, the union class can produce all 2k possible
labelings on these examples. Use Sauer’s lemma to show that the union
class cannot produce more than rkd labelings. Therefore, 2k < rkd. Now
use Lemma A.2.

2. (*) Prove that for r = 2 it holds that

VCdim (

H1UH2)<2d+1.

12. Dudley classes: In this question we discuss an algebraic framework for

defining concept classes over Rn and show a connection between the VC
dimension of such classes and their algebraic properties. Given a function

F:Rn - R we define the corresponding function, POS(f)(x) = 1[f(x)>0]. For
aclass

F of real valued functions we define a corresponding class of functions
POS(

F) ={POS(f) : f € F}. We say that a family, F, of real valued func-

tions is linearly closed if for all f,g
€ Fandr €R, (f+rg) € F (where
addition and scalar multiplication of functions are defined point wise, namely,

forall x € Rn, (f + rg)(x) = f(x) + rg(x)). Note that if a family of functions

is linearly closed then we can view it as a vector space over the reals. For a

nction :Rn —Ran FFdeffug dafamilyoffunctions,let+g={f+g:f EF}.

Hypothesis classes that have a representation as POS(
F + g) for some vector
space of functions
F and some function g are called Dudley classes.
1. Show that for every g : Rn
— R and every vector space of functions F as
defined earlier, VCdim(POS(
F+g)) = VCdim(POS(F)).
2. (**) For every linearly closed family of real valued functions
F, the VC-
dimension of the corresponding class POS(
F) equals the linear dimension
of
F (as a vector space). Hint: Let f1, . . ., fd be a basis for the vector space
F.Considerthemappingx—7(f(x),...,f(x))(froRnRd1dmto).Note
that this mapping induces a matching between functions over Rn of the
form POS(f) and homogeneous linear halfspaces in Rd (the VC-dimension
of the class of homogeneous linear halfspaces is analyzed in Chapter 9).
3. Show that each of the following classes can be represented as a Dudley
class:
1.TheclassHSofhalfspacesoverRnn(seeChapter9).

2.TheclassHHSofallhomogeneoushalfspacesoveRnnr(seeChapter9).
3.TheclassBofallfunctionsdefinedby(open)bRddallsin.Usethe

Dudley representation to figure out the VC-dimension of this class.
4.LetPdndenotetheclassoffunctionsdefinedbypolynomialinequalities

of flGalf1y,

-~ 1.



82 The VC-Dimension

where, for x = (x1. ..., xn), hp(x) = 1[p(x) >0] (the degree of a multi-
variable polynomial is the maximal sum of variable exponents over all

ofitsterms.Forexample,thedegreeofp(x)=3x32+4 21x2 x3x7is5).
1. Use the Dudley representation to figure out the VC-dimension of the

classPd1-theclassofalld-degreepolynomialsoverR.

2. Prove that the class of all polynomial classifiers over R has infinite
VC-dimension.

3. Use the Dudley representation to figure out the VC-dimension of the
class Pdn (as a function of d and n).
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Nonuniform Learnability

The notions of PAC learnability discussed so far in the book allow the sample
sizes to depend on the accuracy and confidence parameters, but they are uniform
with respect to the labeling rule and the underlying data distribution. Conse-
quently, classes that are learnable in that respect are limited (they must have a
finite VC-dimension, as stated by Theorem 6.7). In this chapter we consider more
relaxed, weaker notions of learnability. We discuss the usefulness of such notions
and provide characterization of the concept classes that are learnable using these
definitions.
We begin this discussion by defining a notion of “nonuniform learnability” that
allows the sample size to depend on the hypothesis to which the learner is com-
pared. We then provide a characterization of nonuniform learnability and show
that nonuniform learnability is a strict relaxation of agnostic PAC learnability.
We also show that a sufficient condition for nonuniform learnability is that i
is
a countable union of hypothesis classes, each of which enjoys the uniform con-
vergence property. These results will be proved in Section 7.2 by introducing a
new learning paradigm, which is called Structural Risk Minimization (SRM). In
Section 7.3 we specify the SRM paradigm for countable hypothesis classes, which
yields the Minimum Description Length (MDL) paradigm. The MDL paradigm
gives a formal justification to a philosophical principle of induction called Oc-
cam’s razor. Next, in Section 7.4 we introduce consistency as an even weaker
notion of learnability. Finally, we discuss the significance and usefulness of the
different notions of learnability.

Nonuniform Learnability

“Nonuniform learnability” allows the sample size to be nonuniform with respect
to the different hypotheses with which the learner is competing. We say that a
hypothesis h is (g, §)-competitive with another hypothesis h” if, with probability
higher than (1
L ()
<L'DhD(h)+e.

In PAC learnability, this notion of “competitiveness” is not very useful, as we
are looking for a hypothesis with an absolute low risk (in the realizable case) or

Understanding Machine Learning, ©c2014byShaiShalev-ShwartzandShaiBen-David
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7.1.1

Nonuniform Learnability

with a low risk compared to the minimal risk achieved by hypotheses in our class
(in the agnostic case). Therefore, the sample size depends only on the accuracy
and confidence parameters. In nonuniform learnability, however, we allow the

sample size to be of the form m . .
H(g, &, h); namely, it depends also on the h with

which we are competing. Formally,

definition 7.1 A hypothesis class
H is nonuniformly learnable if there exist a
learning algorithm, A, and a function mNUL : (0 1)2

H, xH—Nsuchthat,forevery
€,0
€ (0, 1) and for every h € H, if m > mNULH (g, §, h) then for every distribution
D, with probability of at least 1 - & over the choice of S Dm, it holds that

L
B (aysPthesis(hlassig agnostically PAC learnable if there exist a learning algo-
Flthm,,ﬂpﬂﬁ 'iﬁ?“t%H hﬁéfﬁgﬂﬁ%%‘éall the definition of agnostic PAC learn-
%r? n 0{113; nW|thprobab|l|tyofatleast
apifi
overthe 0|ceo oldgghat
-(0)1)2 L )) . h/) +
H -N ,56€(0,1) D (As) < i 1o ( &

Nbte that this implies that forevery k= H

S m L <L D(h) +
D (AS))

In both types of learnability, we require that the output hypothesis will be
(€,6)-competitive with every other hypothesis in the class. But the difference
between these two notions of learnability is the question of whether the sample
size m may depend on the hypothesis h to which the error of A(S) is compared.
Note that that nonuniform learnability is a relaxation of agnostic PAC learn-
ability. That is, if a class is agnostic PAC learnable then it is also nonuniformly
learnable.

>mH(g,0) 1-0

Characterizing Nonuniform Learnability

Our goal now is to characterize nonuniform learnability. In the previous chapter
we have found a crisp characterization of PAC learnable classes, by showing that
a class of binary classifiers is agnostic PAC learnable if and only if its VC-
dimension is finite. In the following theorem we find a different characterization
for nonuniform learnable classes for the task of binary classification.

theorem 7.2 Ahypothesisclass ofbinaryclassifiersisnonuniformlylearn-
able if and only if it is a countable union of agnostic PAC learnable hypothesis
classes.

The proof of Theorem 7.2 relies on the following result of independent interest:
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HGLLR0R6e et

EN H
Uhesisclassthatcanbewrittengsacountableunionofhypothesisclasses,=nHn,whereeachHnenjoystheuniformcon
Recall that in Chapter 4 we have shown that uniform convergence is sufficient

for agnostic PAC learnability. Theorem 7.3 generalizes this result to nonuni-
form learnability. The proof of this theorem will be given in the next section by
introducing a new learning paradigm. We now tu

UrntoprovingTheorem?7.2.ProofofTheorem7.2FirstassumethatH=n&NHnwhereeachHnisag-nosticPAClearnable.

follows that each Hn has the uniform convergence property. Therefore, using

Theorem 7.3 we obtain that
H is nonuniform learnable.
For the other direction, assume that
H is nonuniform learnable using some
algorithm A. For every n
€ N, let Hn = {h € H: mNULH (1/8,1/7,h) < n}.
Clearly,
H=U nHn.Inaddition,u mNULEN singthedefinitionofHweknowthat
for any distribution
D that satisfies the realizability assumption with respect td

H,withprobabilityofatleast6/70S DnnverwehavethatLD(A(S))<1/8.
Using the fundamental theorem of statistical learning, this implies that the VC-
dimension of
Hn must be finite, and therefore Hn is agnostic PAC learnable.
The following example shows that nonuniform learnability is a strict relax-

ation of agnostic PAC learnability; namely, there are hypothesis classes that are
nonuniform learnable but are not agnostic PAC learnable.

Example7.1 Considerabinaryclassificationproblemwiththeinstancedomain
b eing
X =R. Forevery n € N let Hn be the class of polynomial classifiers of
degree n; namely,
Hn is the set of all classifiers of th

Ueformh(x)=sign(p(x))wherep:R—Risapolynomialofdegreen.LetH=n ENHn.Therefore,Histheclassofallpolynomial
Stk vcahRisk Mininzizationise 12). Hence, H is not PAC learnable,

while on the basis of Theorem 7.3,

Hoga0 e ifauayeaarablrir prior knowledge by specifying a hypothesis class H,

which we believe includes a good predictor for the learning task at hand. Yet

another way to express our prior knowledge is by specifying preferences over

hypotheses within
H. In the Structural Risk Minimization

U(SRM)paradigm,wedosobyfirstassumingthatHcanbewrittenasH=n &ENHnandthen

specifyingaweightfunction,w:N—[0,1],whichassignsaweighttoeach

hypothesis class,  y, sych that a higher weight reflects a stronger preference
for the hypothesis class. In this section we discuss how to learn with such prior

knowledge. In the next section we describe a couple of important weighting
schemes, including Minimum Description Length.
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UConcretely,letHbeahypothesisclassthatcanbewrittenasH=n&NHn.Forexample,Hmaybetheclassofa
the class of polynomial classifiers of degree n (see Example 7.1). Assume that for

each n, the class

Hn enjoys the uniform convergence property (see Definition 4.3
in Chapter 4) with a sample complexity function mUC
H(g,8).Letusalsodefinen

the functionen: N

x(0,1) = (0,1) by

en(m, &) = min

{€€(0,1):mUCH(g,8)<m}. (7.1)n

In words, we have a fixed sample size m, and we are interested in the lowest
possible upper bound on the gap between empirical and true risks achievable by
using a sample of m examples.

From the definitions of uniform convergence and €n, it follows that for every

m and &, with probability of at least 1
- & over the choice of S Dm we have

that
Vh € Hn, |LD(h) - LS(h

Yl<en(m,d).(7.2)Letw:N—eo[0,1]beafunctionsuchthatn=1w(n)<1.Werefertowasaweightfunctionovert
can reflect the importance that the learner attributes to each hypothesis class,
or some measure of the complexity of different hypothesis classes. If
His a finite
union of N hypothesis classes, one can simply assign the same weight of 1/N to
all hypothesis classes. This equal weighting corresponds to no a priori preference
to any hypothesis class. Of course, if one believes (as prior knowledge) that a
certain hypothesis class is more likely to contain the correct target function,
then it should be assigned a larger weight, reflecting this prior knowledge. When
H is a (countable) infinite union of hypothesis classes, a uniform weighting is
not possible but many other weighting schemes may work. For example, one can
chooseyv(n)= 6or ()=g—n _1m2n2 wn Laterinthischapterwewillprovideanother
convenient way to define weighting functions using description languages.
The SRM rule follows a “bound minimization” approach. This means that
the goal of the paradigm is to find a hypothesis that minimizes a certain upper
bound on the true risk. The bound that the SRM rule wishes to minimize is
given in the following theorem.

theorem7.4 Let :
- [0 1] be a function suc =

-6 D
UScowN, hthatn=1w(n) 51.LetHbeahypothesnisclassthgcanbewri’%erﬁsH:n €NHn,whereforeachn,Hr

asosgsdeednEaygig2 L Thgn oryeny o0 g
D,WithproLa_bilityofatleastl overthechoiceofS m,the

Toiesaiioks donaveids Gimu Rnbowad sstelsijavarphwith probability of at least
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1 0 itholdsthat

Vh&H,LD(h)<LS(h)+minen(m,w(n)-8).(7.3)n:h
EHn
Proof Foreachndefinedn=w(n)&.Applyingtheassumptionthatuniform

convergence holds for all n with the rate given in Equation (7.2), we obtain that
if we fix nin advance, then with probability of at least 1

- &n over the choice of
S
Dm,

Y h € Hn, [LD(h) - LS(h)| < en(m,bn).
Applying th 0

Yeunionboundyovern=1,2,...,weobtainthatwithprobabilityofatleastl-nén=1-6nw(n)>1-8,theprecedingholdsfore

Denote

n(h) = min
{n:h€Hn}, (7.4)
and then Equation (7.3) implies that

L

D(h) < LS(h) + en(h)(m, w(n(h)) - d).
The SRM parathigetseatRiskdviirtivatinsibienizEsRMY bound, as formalized
iribe fgllowing pseudocode:

Unowledge:H=HWhereHhasuniforr&convergencewithmUCnnnHnW:N—>[0,1]WherenW(n)sl
define: £n as in Equation (7.1) ; n(h) as in Equation (7.4)
input: training set S

Dm, tonfidence & [ ]
output-h
€ argminh&€H LS(h) + en(h)(m, w(n(h)) - )
Unlike the ERM paradigm discussed in previous chapters, we no longer just care
about the empirical risk, LS(h), but we are willing to trade some dfJour bias
toward low empirical risk with a bias toward classes for which en(h)(m, w(n(h))

-8)

is smaller, for the sake of a smaller estimation error.
Next we show that the SRM paradigm can be used for nonuniform learning

of every class, which is a countable union of uniformly converging hypothesis
classes. Letbeahypothesisclasssuchthat ,where

?ﬁ%rem F+Ras the uniform convergence property with sample complexity . Let
H H=n&NHn - besuchthat .Then,isnonuniformlylearnable
%iHﬁ% SRM rule with rate

V|_\|/:N[O,1] win=6  my(e,8,h) < Ml W E/2, wnz ) -
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yroofLetAbetheSRMalgorithmwithrespecttotheweightingfunctionw.Foreveryh&€H,
€,and§,letm>mUCH(g,w(n(h))8).Usingthefactthatn(h)nw(n)=1,wecanapplyTheore
m7.4togetthat,withprobabilityofatleastl-6overthechoiceofS Dm,wehavethatfor

everyh’€H,

("
<("'DhLSh)+en(h")(m,w(n(h))d).
The preceding holds in particular for the hypothesis A(S) returned by the SRM
rule. By the defin

[itionofSRMweobtainthatL(())min(")+("IDAS<LShenh’'m,w<h’()(n(h))&)LS(h)+en(h)

(m,w(n(h))5)

Finally, if m 2mUCH(E/2.w(n(h) )thenclearlye<n(h)n(h) (m,w(n(h)8)e/2.In
addition, from the uniform convergence property of'each
Hn we have that with

probability of more than 1

LS (h)

< LD(h) + /2.

Combining all the preceding we obtain that L

D(A(S)) < LD(h) + &, which con-
cludes our proof.

Note that the previous theorem also proves Theorem 7.3.

Remark 7.2 (No-Free-Lunch for Nonuniform Learnability) We have shown that
any countable union of classes of finite VC-dimension is nonuniformly learnable.

It turns out that, for any infinite domain set, .
y X, the class of all binary valued

functions over
X is not a countable union of classes of finite VC-dimension. We

leave the proof of this claim as a (nontrivial) exercise (see Exercise 5). It follows
that, in some sense, the no free lunch theorem holds for nonuniform learning
as well: namely, whenever the domain is not finite, there exists na nanuniform
learner with respect to the class of all deterministic binary classifiers (although
for each such classifier there exists a trivial algorithm that learns it — ERM with
respect to the hypothesis class that contains only this classifier).

It is interesting to compare the nonuniform learnability result given in The-
orem 7.5 to the task of agnostic PAC learning any specific

prior knowledge, or bias, of a nonuniform learner for
His weaker — it is searching

Hn separately. The

for a model throughout the entire class
H, rather than being focused on one spe-
cific
Hn. The cost of this weakening of prior knowledge is the increase in sample
complexity needed to compete with any specific h
€ Hn. For a concrete evalua-
tion of this gap, consider the task of binary classification with the zero-one loss.

Assume that for all n, VCAiIM( s 4 10a(1/8)n)=n SincemH(e,8)=Cn. e2(where
C is the contant appearing in Theorem 6.8), a straightforward calculation shows
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the index of the first class in which h resides. That cost increases with the index
of the class, which can be interpreted as reflecting the value of knowing a good
ﬂriority order on the hypotheses in

Minimum Description Length and Occam’s Razor

Febe a countable hypothesis class. T

Uhen,wecanwriteHasacountableunionofsingletonclasses,namely,H=nEN{hn}.By

Hoeffding’sinequality(femma4.5),eachsingletonclasshastheuniformconvergence

propertywith

rate mUC(g,d) = log
V(2/6)2¢€2.Therefore,thefunctionengiveninEquation(7.1)becomese(m,6)=log

[(2/8)n2mandvtheSRMrulebecomes]-log(w(n))+log(2/8)argminLS(h)+.hmn&EH2

Equivalently, we can think of w as a function from
Hto [0, 1], and then the SRM

rule becomes

[V]-log(w(h))+log(2/8)argminLS(h)+.hEH2m

It follows that in this case, the prior knowledge is solely determined by the
weight we assign to each hypothesis. We assign higher weights to hypotheses
that we believe are more likely to be the correct one, and in the learning
algorithm we prefer hypotheses that have higher weights.

In this section we discuss a particular convenient way to define a weight func-

tion over
H, which is derived from the length of descriptions given to hypotheses.

Having a hypothesis class, one can wonder about how we describe, or represent,
each hypothesis in the class. We naturally fix some description language. This
can be English, or a programming language, or some set of mathematical formu-
las. In any of these languages, a description consists of finite strings of symbols
(or characters) drawn from some fixed alphabet. We shall now formalize these
notions.
Let

H be the hypothesis class we wish to describe. Fix some finite set
of symbols (or “characters”), which we call the alphabet. For concreteness, we

let> = {0,1}. A string is a finite sequence of symbols from Z; for example,
0=(0,1,1,1,0)is astring of length 5. We denote by
|o| the length of a string.
The set of all finite length strings is denoted X * . A description language for
H
is a function d :
H = Z %, mapping each member h of H to a string d(h). d(h) is
called “the description of h,” and its length is denoted by
Ihi.
We shall require that description languages be prefix-free; namely, for every
distinct h,h’, d(h) is not a prefix of d(h’). That is, we do not allow that any
string d(h) is exactly the first
|h| symbols of any longer string d(h’). Prefix-free
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lemma 7.6 (Kraft Inequality) If

$SE{0,1} * isaprefix-freesetofstrings,then1|<1.20|0 €S

Proof Defineaprobabilitydistributionoverthemembersof S as follows: Re-

peatedly toss an unbiased coin, with faces labeled 0 and 1, until the sequence

of outcomes is a member of S; at that point, stop. For each o € S, let P(0)
be the probability that this process generates the string 0. Note that since
Sis
prefix-free, for every o
-&-S, if the coin toss outcomes follow the bits of o then
we will stop only once the sequence of outcomes equals o. We therefore get thaf}]
forevery o

: €5,P(0)=1.Sin2|o|ceprobabilitiesadduptoatmostl,ourproof
is concluded.

In light of Kraft’s inequality, any prefix-free description language of a hypoth-

eg'tsbcelg ? olfh&ygéléggeam?ewelghtmg function w over that hypothesaﬁlass -

ill t his ob ti tely yields th pref x
ﬁvl%qé'er'%& A et SRS efation immediately vields eitldlence%a

gg}gﬁg § >, and every probablhty distribution,
WGI‘D@}@rthechmceof Wehavethat

gW€H|h|+ln(2/6 hDOLS(h)+,dm <
Wﬁg{ﬁelengthof(). dh

everycon

D, with probability greater

/
\/ProofChoosevv(h)=12|hI,appgy];heorem7.4With£(m,6)=ln(2/5)n2m,andnotethatﬁ1(2Ih|)=
[hlln(2) [[.

As was the case with Theorem 7.4, this result suggests a learning paradigm

for given a train

Vingset,S,searchforahypothesish&Hthatminimizesthebound,L()+|h|+ln(2/8)Sh2m.Inparticular,itsug;
learning paradigm.

Minimum Description Length (MDL)

prior knowledge:
H is a countable hypothesis class
H is described by a prefix-free language over {0,1}

Forevery h )
€ H, |h|'is the length of the representation of
S

[ hinput:Atrainingset Dm,convfidenced]output:hEargminL(h)+|h[+In(2/8)hEHS2m

Example7.3 Let

H be the class of all predictors that can be implemented using
some programming language, say, C++. Let us represent each program using the
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binary string obtained by running the gzip command on the program (this yields a

prefix-free description language over the alphabet o
{0,1}). Then, |h| is simply

the length (in bits) of the output of gzip when running on the C++ program
corresponding to h.

Occam’s Razor

Theorem 7.7 suggests that, having two hypotheses sharing the same empirical
risk, the true risk of the one that has shorter description can be bounded by a
lower value. Thus, this result can be viewed as conveying a philosophical

message:
A short explanation (that is, a hypothesis that has a short length) tends to be more valid
than a long explanation.

This is a well known principle, called Occam’s razor, after William of Ockham, a
14th-century English logician, who is believed to have been the first to phrase it
explicitly. Here, we provide one possible justification to this principle. The
inequality of Theorem 7.7 shows that the more complex a hypothesis h is (in the
sense of having a longer description), the larger the sample size it has to fit to
%u(ahr)antee that it has a small true risk, L

At a second glance, our Occam razor claim might seem somewhat problematic.
In the context in which the Occam razor principle is usually invoked in science,
the language according to which complexity is measured is a natural language,
whereas here we may consider any arbitrary abstract description language. As-
sume that we have two hypotheses such that
[h’| is much smaller than |h|. By
the preceding result, if both have the same error on a given training set, S, then
the true error of h may be much higher than the true error of h’, so one should
prefer h” over h. However, we could have chosen a different description language,
say, one that assigns a string of length 3 to h and a string of length 100000 to h’".
Suddenly it looks as if one should prefer h over h’. But these are the same h and
h” for which we argued two sentences ago that h” should be preferable. Where is
the catch here?
Indeed, there is no inherent generalizability difference between hypotheses.
The crucial aspect here is the dependency order between the initial choice of
language (or, preference over hypotheses) and the training set. As we know from
the basic Hoeffding

V’sbound(Equation(4.2)),ifwecommittoanyhypothesisbe-
foreseeingthedata,thenweareguaranteedarathersmallestimationerrortermLIin(2/
6)D(h)<LS(h)+2m.Choosingadescriptionlanguage(or,equivalently,someweightingo

fhypotheses)isaweakformofcommittingtoahypothesis.

Rather than committing to a single hypothesis, we spread out our commitment
among many. As long as it is done independently of the training sample, our gen-
eralization bound holds. Just as the choice of a single hypothesis to be evaluated
by a sample can be arbitrary, so is the choice of description language.
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Other Notions of Learnability — Consistency

The notion of learnability can be further relaxed by allowing the needed sample
sizes to depend not only on g, &, and h but also on the underlying data-generating

probability distribution ) o
D (that is used to generate the training sample and to

determine the risk). This type of performance guarantee is captured by the notion
of consistencyl of a learning rule.

definition 7.8 (Consistency) Let Z be a domain set, let

P be a set of
probability distributions over Z, and let
H be a hypothesis class. A learn-
ing rule A is consistent with respect to
H and P if there exists a function
mCON : (0 1)2

H, xHxP—Nsuchthat,foreverye,6 €(0,1),everyh&EH,and
every
DEP,ifm>mNULH(g,6,h,D)thenwithprobabilityofatleastl1-&over
the choice of S
Dm it holds that

L
D(A(S)) < LD(h) + .
If

P is the set of all distributions,2 we say that A is universally consistent with
respect to
H.

The notion of consistency is, of course, a relaxation of our previous notion

of nonuniform learnability. Clearly if an algorithm nonuniformly learns a class
H it is also universally consistent for that class. The relaxation is strict in the
sense that there are consistent learning rules that are not successful nonuniform
learners. For example, the algorithm Memorize defined in Example 7.4 later is

universally consistent for the class of all binary classifiers over N. However, as
we have argued before, this class is not nonuniformly learnable.

Example7.4 ConsidertheclassificationpredictionalgorithmMemorizedefined as
follows. The algorithm memorizes the training examples, and, given a test point X,
it predicts the majority label among all labeled instances of x that exist in the
training sample (and some fixed default label if no instance of x appears in the
training set). It is possible to show (see Exercise 6) that the Memorize algorithm
is universally consistent for every countable domain .
X and a finite
lﬁbﬁkﬁ@ﬁterature, consistency is often defined using the notion of either convergence in
Y (wobhbilg zeitegientnsg ko weak consistency) or almost sure convergence (corresponding
» FLHERERIE 0t obyious that the Memorize algorithm should be viewed a5 a
hsinae wbanksrthe aspactiof gettradizad toar Rava elypataisidgnobeerved

associated family gf measurable subsets . .
to pre 2Ethe lalXe s of unseen examples. The fact that Memorize is a consistent

algorithm for the class of all functions over any countable domain set therefore
raises doubt about the usefulness of consistency guarantees. Furthermore, the
sharp-eyed reader may notice that the “bad learner” we introduced in Chapter 2,
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which led to overfitting, is in fact the Memorize algorithm. In the next section we
discuss the significance of the different notions of learnability and revisit the No-
Free-Lunch theorem in light of the different definitions of learnability.

Discussing the Different Notions of Learnability

We have given three definitions of learnability and we now discuss their useful-
ness. As is usually the case, the usefulness of a mathematical definition depends
on what we need it for. We therefore list several possible goals that we aim to
achieve by defining learnability and discuss the usefulness of the different defini-
tions in light of these goals.

What Is the Risk of the Learned Hypothesis?

The first possible goal of deriving performance guarantees on a learning algo-
rithm is bounding the risk of the output predictor. Here, both PAC learning and
nonuniform learning give us an upper bound on the true risk of the learned
hypothesis based on its empirical risk. Consistency guarantees do not provide
such a bound. However, it is always possible to estimate the risk of the output
predictor using a validation set (as will be described in Chapter 11).

How Many Examples Are Required to Be as Good as the Best Hypothesis
n?

When approaching a learning problem, a natural question is how many exam-
ples we need to collect in order to learn it. Here, PAC learning gives a crisp
answer. However, for both nonuniform learning and consistency, we do not know

in advance how many examples are required to learn ) ]
H. In nonuniform learning

this number depends on the best hypothesis in

H, and in consistency it also
depends on the underlying distribution. In this sense, PAC learning is the only
useful definition of learnability. On the flip side, one should keep in mind that
even if the estimation error of the predictor we learn is small, its risk may still

be large if H has a large approximation error. So, for the question “How many

examples are required to be as good as the Bayes optimal predictor?” even PAC
guarantees do not provide us with a crisp answer. This reflects the fact that the
usefulness of PAC learning relies on the quality of our prior knowledge.

PAC guarantees also help us to understand what we should do next if our
learning algorithm returns a hypothesis with a large risk, since we can bound
the part of the error that stems from estimation error and therefore know how
much of the error is attributed to approximation error. If the approximation error
is large, we know that we should use a different hypothesis class. Similarly, if a
nonuniform algorithm fails, we can consider a different weighting function over
(subsets of) hypotheses. However, when a consistent algorithm fails, we have
no idea whether this is because of the estimation error or the approximation
error. Furthermore, even if we are sure we have a problem with the estimation
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error term, we do not know how many more examples are needed to make the
estimation error small.

How to Learn? How to Express Prior Knowledge?

Maybe the most useful aspect of the theory of learning is in providing an answer
to the question of “how to learn.” The definition of PAC learning yields the
limitation of learning (via the No-Free-Lunch theorem) and the necessity of prior
knowledge. It gives us a crisp way to encode prior knowledge by choosing a
hypothesis class, and once this choice is made, we have a generic learning rule -
ERM. The definition of nonuniform learnability also yields a crisp way to encode

prior knowledge by specifying weights over (subsets of) hypotheses of o
.Once

this choice is made, we again have a generic learning rule — SRM. The SRM rule
is also advantageous in model selection tasks, where prior knowledge is partial.
We elaborate on model selection in Chapter 11 and here we give a brief example.

Consider the problem of fitting a one dimensional polynomial to data; namely,
our goal is to learn a function, h : R

- R, and as prior knowledge we consider

the hypothesis class of polynomials. However, we might be uncertain regarding
which degree d would give the best results for our data set: A small degree might
not fit the data well (i.e., it will have a large approximation error), whereas a
high degree might lead to overfitting (i.e., it will have a large estimation error).
In the following we depict the result of fitting a polynomial of degrees 2, 3, and
10 to the same training set.

degree 2 degree 3 degree 10
|
AN
SN P e \-_/*\ L Iy

It is easy to see that the empirical risk decreases as we enlarge the degree.

Therefore, if we choose ]
H to be the class of all polynomials up to degree 10 then

the ERM rule with respect to this class would output a 10 degree polynomial
and would overfit. On the other hand, if we choose too small a hypothesis class,
say, polynomials up to degree 2, then the ERM would suffer from underfitting
(i.e., a large approximation error). In contrast, we can use the SRM rule on the
set of all polynomials, while ordering subsets of

H according to their degree, and
this will yield a 3rd degree polynomial since the combination of its empirical
risk and the bound on its estimation error is the smallest. In other words, the
SRM rule enables us to select the right model on the basis of the data itself. The
price we pay for this flexibility (besides a slight increase of the estimation error
relative to PAC learning w.r.t. the optimal degree) is that we do not know in
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advance how many examples are needed to compete with the best hypothesis in
H.
Unlike the notions of PAC learnability and nonuniform learnability, the defini-
tion of consistency does not yield a natural learning paradigm or a way to encode
prior knowledge. In fact, in many cases there is no need for prior knowledge at
all. For example, we saw that even the Memorize algorithm, which intuitively
should not be called a learning algorithm, is a consistent algorithm for any class
defined over a countable domain and a finite label set. This hints that consistency
is a very weak requirement.

Which Learning Algorithm Should We Prefer?
One may argue that even though consistency is a weak requirement, it is
desirable that a learning algorithm will be consistent with respect to the set of all

functions from o .
Xto'Y, which gives us a guarantee that for enough training examples, we

will always be as good as the Bayes optimal predictor. Therefore, if we have

two algorithms, where one is consistent and the other one is not consistent, we
should prefer the consistent algorithm. However, this argument is problematic for
two reasons. First, maybe it is the case that for most “natural” distributions we
will observe in practice that the sample complexity of the consistent algorithm
will be so large so that in every practical situation we will not obtain enough
examples to enjoy this guarantee. Second, it is not very hard to make any PAC

or nonuniform learner consistent with respect to the class of all functions from
Xto Y. Concretely, consider a countable domain, X, a finite label set Y, and

ahypothesis class, H, of functions from X to Y. We can make any nonuniform

learner for

H be consistent with respect to the class of all classifiers from X to Y
using the following simple trick: Upon receiving a training set, we will first run
the nonuniform learner over the training set, and then we will obtain a bound
on the true risk of the learned predictor. If this bound is small enough we are
done. Otherwise, we revert to the Memorize algorithm. This simple modification
makes the algorithm consistent with respect to all functions from

XtoY. Since

it is easy to make any algorithm consistent, it may not be wise to prefer one

%W@Wé?fﬁr%‘éﬁmﬂ?&ﬂt‘?ﬁémﬁﬁ%\%ﬁ&& consistency considerations.

Recall that the No-Free-Lunch theorem (Theorem 5.1 from Chapter 5) implies
that no algorithm can learn the class of all classifiers over an infinite domain. In
contrast, in this chapter we saw that the Memorize algorithm is consistent with
respect to the class of all classifiers over a countable infinite domain. To
understand why these two statements do not contradict each other, let us first
recall the formal statement of the No-Free-Lunch theorem.

Let I : (&}
X be a countable infinite domain and let \?‘l'— 1. The No-Free-Lunch

theorem implies the following: For any algorithm, A, anan 'ﬁ\irvng set size, m,
there exist a distribution over X and a function h? :, such that if A
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will get a sample of m i.i.d. training examples, labeled by h?, then A is likely to
return a classifier with a larger error.

The consistency of Memorize implies the following: For every distribution over
X and a labeling function h? : X =Y, there exists a training set size m (that
depends on the distribution and on h?) such that if Memorize receives at least
m examples it is likely to return a classifier with a small error.

We see that in the No-Free-Lunch theorem, we first fix the training set size,
and then find a distribution and a labeling function that are bad for this training
set size. In contrast, in consistency guarantees, we first fix the distribution and
the labeling function, and only then do we find a training set size that suffices
for learning this particular distribution and labeling function.

Summary

We introduced nonuniform learnability as a relaxation of PAC learnability and
consistency as a relaxation of nonuniform learnability. This means that even
classes of infinite VC-dimension can be learnable, in some weaker sense of learn-
ability. We discussed the usefulness of the different definitions of learnability.

For hypothesis classes that are countable, we can apply the Minimum Descrip-
tion Length scheme, where hypotheses with shorter descriptions are preferred,
following the principle of Occam’s razor. An interesting example is the hypothe-
sis class of all predictors we can implement in C++ (or any other programming
language), which we can learn (nonuniformly) using the MDL scheme.

Arguably, the class of all predictors we can implement in C++ is a powerful class
of functions and probably contains all that we can hope to learn in prac- tice. The
ability to learn this class is impressive, and, seemingly, this chapter should have
been the last chapter of this book. This is not the case, because of the
computational aspect of learning: that is, the runtime needed to apply the
learning rule. For example, to implement the MDL paradigm with respect to all
C++ programs, we need to perform an exhaustive search over all C++ pro- grams,
which will take forever. Even the implementation of the ERM paradigm with
respect to all C++ programs of description length at most 1000 bits re- quires an
exhaustive search over 21000 hypotheses. While the sample complexity

of learning this class is just 1000+log(2/6)
€ >10002,theruntimeis2.Thisisahuge

number — much larger than the number of atoms in the visible universe. In the
next chapter we formally define the computational complexity of learning. In the
second part of this book we will study hypothesis classes for which the ERM or
SRM schemes can be implemented efficiently.
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Bibliographic Remarks

Our definition of nonuniform learnability is related to the definition of an Occam-
algorithm in Blumer, Ehrenfeucht, Haussler & Warmuth (1987). The concept of
SRM is due to (Vapnik & Chervonenkis 1974, Vapnik 1995). The concept of MDL is
due to (Rissanen 1978, Rissanen 1983). The relation between SRM and MDL is
discussed in Vapnik (1995). These notions are also closely related to the notion
of regularization (e.g. Tikhonov (1943)). We will elaborate on regularization in the
second part of this book.

The notion of consistency of estimators dates back to Fisher (1922). Our pre-
sentation of consistency follows Steinwart & Christmann (2008), who also
derived

several no-free-lunch theorems.

Exercises

1. Prove that for any finite class H, and any description language d : H -

{0,1} *, the VC-dimension of H is at most 2sup{|d(h)| : h € H} - the maxi-
mum description length of a predictor in

description then VCdim(H)
< sup{|d(h)| : h € H}.
2. Let

H. Furthermore, if d is a prefix-free

H ={hn:n & N} be an infinite countable hypothesis class for binary
classification. Show that it is impossible to assign weights to the hypotheses

Msuch that
« Hcouldbelearntnonuniformlyusingtheseweights.Th

Yatis,theweightingfunctionw:H—[0,1]shouldsatisfytheconditionh&Hw(h)<1.-Theweightswouldbemonotonicallyr

Witk

Uw3.+ConsiderahypothesisclassH=n=1Hn,whereforevery

YnEN,Hnisfinite.Findaweightingfunctionw:H—[0,1]suchthath&EHw(h)<landsothatforallhEH,w(h)isdeterminedk

Hn} and by [Hn(h)|.
« (*) Define such a function w when for all n Hn is countable (possibly
infinite).
4. Let
H be some hypothesis class. For any h € H, let |h| denote the description
length of h, according to some fixed description language. Consider the MDL
learning paradigm in which the

[algorithmVreturns:] € |h|+In(2/8)hSargminLS(h)+,hEH2m

where S is a sample of size m. For any B > § Het
HB={h&H:|h|<B},
and define

h *x B=argminL
D(h).hB
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Prove a bound on L (h) -Lh * DSD(B)intermsofB, theconfidenceparameter
8, and the size of the training set m.

« Note: Such bounds are known as oracle inequalities in the literature: We
wish to estimate how good we are compared to a reference classifier (or
éoracle”) h*

5. In this question we wish to show a No-Free-Lunch result for nonuniform learn-
ability: namely, that, over any infinite domain, the class of all functions is not
learnable even under the relaxed nonuniform variation of learning.
Recall that an algorithm, A, nonuniformly learns a hypothesis class Hif
i
thereexistsafunctionmNUL 2

H:(0,1) xH—Nsuchthat,foreverye,6 €(0,1)
and for every h
€ H, if m > mNULH (g, &, h) then for every distribution D, with
probability of at least 1
- & over the choice of S Dm, it holds that

L
D(A(S)) < LD(h) + €.
If such an algorithm exists then we say that
H is nonuniformly learnable.

1. Let A be a nonuniform learner for a class
H. For each n € N define HAn =
{h € H: mNUL(0.1, 0.1, h) < n}. Prove that each such class Hn has a finite
VC-dimension.
2. Prove that if

UaclassHisnonuniformlylearnablethenthereareclassesHnsothatH=n &NHnand,foreveryn €N,VCdim(

Uiteset.Then,foreverysequenceofclasses(Hn:n&EN)suchthatH=n & NHn,thereexistssomenforwhichVC

Hint: Given a class H that shatters some infinite set K, and a sequence of

classes (
Hn : n € N), each having a finite VC-dimension, start by defining
subsets Kn
€ Ksuch that, for all n, |[Kn| > VCdim(Hn) and for any
n

6=m, Kn N Km = @. Now, pick for each such Kn a function fn : Kn -»
{0, 1} so that no h € Hn agrees with fn on the domain Kn

(.FinaUlly,defin)ef:X—{0,1}bycombiningthesefn’sandprovethatfEH\n&ENHn.4.ConstructaclassH1offi

is nonuniformly learnable but not PAC learnable.
5. Construct a class
H2 of fugetions fPofh the unit interval [0, 1] to {0, 1} that

>

is not nonuniformly learnable. z

6. In. isequgsyior we VO d0e bisay thatdaigigenthnoMeastorieg is a consistent

learner for every class of (binary-valued) functions over any countable domain.
Let D{ € X (D:({)fSD H<e.

X be a countable domain and let D be a probability distribution over X.

1. Let
_ {xi :i € N} be an enumeration of the elements of X so that for all
i
< j, D({xi}) < D({xj}). Prov

Yethatlim(xi})=0.nin
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3. Prove that for every n > 0, if nis such that D({xi}) < n for alli > n, then

forevery m
€N,

P [
dx mnmi:(D({xi})>nandxi€/S)]<ne.S
4. Conclude that if

X is countable then for every probability distribution D
over

X there exists a function mD : (0, 1) x (0, 1) — N such that for every
€,6>0ifm>m
D(g, &) then

P [

DX E/S}H>€]<b.5

5. Prove that Memorize is a consistent learner for every class of (binary-
valued) functions over any countable domain.



The Runtime of Learning

So far in the book we have studied the statistical perspective of learning, namely,
how many samples are needed for learning. In other words, we focused on the
amount of information learning requires. However, when considering automated
learning, computational resources also play a major role in determining the com-
plexity of a task: that is, how much computation is involved in carrying out a
learning task. Once a sufficient training sample is available to the learner, there is
some computation to be done to extract a hypothesis or figure out the label of a
given test instance. These computational resources are crucial in any practical
application of machine learning. We refer to these two types of resources as the
sample complexity and the computational complexity. In this chapter, we turn
our attention to the computational complexity of learning.

The computational complexity of learning should be viewed in the wider con-
text of the computational complexity of general algorithmic tasks. This area has
been extensively investigated; see, for example, (Sipser 2006). The introductory
comments that follow summarize the basic ideas of that general theory that are
most relevant to our discussion.

The actual runtime (in seconds) of an algorithm depends on the specific ma-
chine the algorithm is being implemented on (e.g., what the clock rate of the
machine’s CPU is). To avoid dependence on the specific machine, it is common to
analyze the runtime of algorithms in an asymptotic sense. For example, we say
that the computational complexity of the merge-sort algorithm, which sorts a list
of nitems, is O(nlog(n)). This implies that we can implement the algo- rithm on
any machine that satisfies the requirements of some accepted abstract model of
computation, and the actual runtime in seconds will satisfy the follow-

ing: there exist constants ¢ and n0, which can depend on the actual machine,

such that, for any value of n > n0, the runtime in seconds of sorting any n items
will be at most cnlog(n). It is common to use the term feasible or efficiently

computable for tasks that can be performed by an algorithm whose running time
is O(p(n)) for some polynomial function p. One should note that this type of
analysis depends on defining what is the input size n of any instance to which the
algorithm is expected to be applied. For “purely algorithmic” tasks, as dis-
cussed in the common computational complexity literature, this input size is
clearly defined; the algorithm gets an input instance, say, a list to be sorted, or an
arithmetic operation to be calculated, which has a well defined size (say, the
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number of bits in its representation). For machine learning tasks, the notion of an
input size is not so clear. An algorithm aims to detect some pattern in a data set

and can only access random samples of that data.
We start the chapter by discussing this issue and define the computational
complexity of learning. For advanced students, we also provide a detailed formal
definition. We then move on to consider the computational complexity of im-
plementing the ERM rule. We first give several examples of hypothesis classes
where the ERM rule can be efficiently implemented, and then consider some
cases where, although the class is indeed efficiently learnable, ERM implemen-
tation is computationally hard. It follows that hardness of implementing ERM
does not imply hardness of learning. Finally, we briefly discuss how one can show
hardness of a given learning task, namely, that no learning algorithm can solve

it efficiently.

Computational Complexity of Learning

Recall that a learning algorithm has access to a domain of examples, Z, a hy-

pothesis class, o .
H, a loss function, *, and a training set of examples from Z that

are sampled i.i.d. according to an unknown distribution

D. Given parameters
g, 6, the algorithm should output a hypothesis h such that with probability of
a_tée'ast 1

L(h)y m”
D<inL()+h'Dhe. cH

As mentioned before, the actual runtime of an algorithm in seconds depends on
Elilgnsdnaer%iﬁc machine. To allow machine independent analysis, we use the

approach in computational complexity theory. First, we rely on a notion of an
abstract machine, such as a Turing machine (or a Turing machine over the reals
(Blum, Shub & Smale 1989)). Second, we analyze the runtime in an asymptotic
sense, while ignoring constant factors, thus the specific machine is not important
as long as it implements the abstract machine. Usually, the asymptote is with
respect to the size of the input to the algorithm. For example, for the merge-sort
algorithm mentioned before, we analyze the runtime as a function of the number
of items that need to be sorted.

In the context of learning algorithms, there is no clear notion of “input size.”
One might define the input size to be the size of the training set the algorithm
receives, but that would be rather pointless. If we give the algorithm a very
large number of examples, much larger than the sample complexity of the learn-
ing problem, the algorithm can simply ignore the extra examples. Therefore, a
larger training set does not make the learning problem more difficult, and, con-
sequently, the runtime available for a learning algorithm should not increase as
we increase the size of the training set. Just the same, we can still analyze the
runtime as a function of natural parameters of the problem such as the target
accuracy, the confidence of achieving that accuracy, the dimensionality of the
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domain set, or some measures of the complexity of the hypothesis class with
which the algorithm’s output is compared.
To illustrate this, consider a learning algorithm for the task of learning axis
aligned rectangles. A specific problem of learning axis aligned rectangles is de-
rived by specifying €, 8, and the dimension of the instance space. We can define a
sequence of problems of the type “rectangles learning” by fixing €, 6 and varying
the dimensiontobe d = 2, 3, 4, .. .. We can also define another sequence of
“rect- angles learning” problems by fixing d, & and varying the target accuracy to
- - be
e=11

2,3, ....0ne can of course choose other sequences of such problems. Once
a sequence of the problems is fixed, one can analyze the asymptotic runtime as
a function of variables of that sequence.

Before we introduce the formal definition, there is one more subtlety we need
to tackle. On the basis of the preceding, a learning algorithm can “cheat,” by
transferring the computational burden to the output hypothesis. For example,
the algorithm can simply define the output hypothesis to be the function that
stores the training set in its memory, and whenever it gets a test example x
it calculates the ERM hypothesis on the training set and applies it on x. Note
that in this case, our algorithm has a fixed output (namely, the function that
we have just described) and can run in constant time. However, learning is still
hard - the hardness is now in implementing the output classifier to obtain a
label prediction. To prevent this “cheating,” we shall require that the output of
a learning algorithm must be applied to predict the label of a new example in
time that does not exceed the runtime of training (that is, computing the output
classifier from the input training sample). In the next subsection the advanced
reader may find a formal definition of the computational complexity of learning.

Formal Definition*

The definition that follows relies on a notion of an underlying abstract machine,
which is usually either a Turing machine or a Turing machine over the reals. We
will measure the computational complexity of an algorithm using the number of
“operations” it needs to perform, where we assume that for any machine that
implements the underlying abstract machine there exists a constant c such that
any such “operation” can be performed on the machine using ¢ seconds.

definition 8.1 (The Computational Complexity of a Learning Algorithm)

We define the complexity of learning in two steps. First we consider the compu-
tational complexity of a fixed learning problem (determined by a triplet (Z,

H, ")
—a domain set, a benchmark hypothesis class, and a loss function). Then, in the
second step we consider the rate of change of that complexity along a sequence
of such tasks.

1. Given a function f: (0,1)2
- N, a learning task (Z,H,"), and a learning
algorithm,
A, we say that A solves the learning task in time O(f) if there
exists some constant number c, such that for every probability distribution
D



8.2

8.2 Implementing the ERM Rule 103

over Z, and input €, &
by
Dl
« A terminates after performing at most cf(g, 8) operations

 The output of A, denoted hA, can be applied to predict the label of a new
example while performing at most cf(€, ) operations

« The output of A is probably approximately correct; namely, with proba-
bility of at least 1

€ (0, 1), when A has access to samples generated i.i.d.

- & (over the random samples A receives), LD(hA) <
min”‘h
E€EHLD(h)+¢
2. Consider a sequence of learning problems, (Zn,
H oon, " n)n=1,whereproblemn
is defined by a domain Zn, a hypothesis class
Hn, and a loss function "n.
Let
A be a learning algorithm designed for solving learning problems of
this form. Given a function g : N
x (0,1)2 = N, we say that the runtime of
A with respect to the preceding sequence is 0(g), if for all n, A solves the

problem(Z 2n,
fn(e, 8) = g(n, €, 8).

Hn, n) in time O(fn), where fn : (0,1) = N is defined by

We say that
Ais an efficient algorithm with respect to a sequence (Zn, Hn, "n)
if its runtime is O(p(n, 1/¢, 1/6)) for some polynomial p.

From this definition we see that the question whether a general learning prob-
lem can be solved efficiently depends on how it can be broken into a sequence
of specific learning problems. For example, consider the problem of learning a
finite hypothesis class. As we showed in previous chapters, the ERM rule over
His guaranteed to (g,6)-learn H if the number of training examples is order of

m () IZ|(£,5) =log |H|/& /€ . Assuming that the evaluation of a hypothesis on an
example takes a constant time, it is possible to implement the ERM rule in time

Of(
of siz

m .
Impfement'mlgs:[@)eﬂ:eRMyRNé@ finite H, the exhaustive search algorithm runs
in polynomial time. Furthermore, if we define a sequence of problems in which

frvdr-ahiperiltbsiectansstive seqrehdpmil cRoRdaEbiabe St RAtHAESinE
Wisr efine. T SRERREs8f fiobieany Ep434MHERton ﬁ—[%bl&rﬂstﬁ\’een?ﬁ& BI?RM&%%E\%
isatalingssipienitds ings Hibia My B R RBIbRAEAMIisG Ao e dHatds ahe
SeTeHaaRh AP EBIEXILY 06 HoRteme Wittt he TR MAHRfRusREsRlbypothesis

classes.
Given a hypothesis class,

|[HImH(g,8)) by performing an exhaustive search over H with a training set

H, a domain set Z, and a loss function °, the corre-
sponding ERM
H rule can be defined as follows:
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On afinite in S 2™ output some he y that minimizes the empirical loss,
sputsampteLh1S()=|$]zES().

This section studies the runtime of implementing the ERM rule for several
examples of learning tasks.

Finite Classes

Limiting the hypothesis class to be a finite class may be considered as a reason-

ably mild restriction. For example, )
H can be the set of all predictors that can be

implemented by a C++ program written in at most 10000 bits of code. Other ex-
Bg}amﬁfgr%“l finite classes are any hypothesis class that can be

by a finite number of parameters, where we are satisfied with a representation
of each of the parameters using a finite number of bits, for example, the class of
axis aligned rectangles in the Euclidean space, Rd, when the parameters defining
any given rectangle are specified up to some limited precision.

As we have shown in previous chapters, the sample complexity of learning a
finiteclassisupperboundedbym c H(e,8) = clog(cH|/8)/e , where ¢ = 1 in
the realizable case and ¢ = 2 in the nonrealizable case. Therefore, the sample

complexity has a mild dependence on the size of H. In the example of C++

programs mentioned before, the number of hypotheses is 210,000 but the

sample
complexity is only c(10, 000 + log(c/&))/ec.

A straightforward approach for implementing the ERM rule over a finite hy-
pothesis class is to perform an exhaustive search. That is, for each h SHwe

calculate the empirical risk, LS(h), and return a hypothesis that minimizes
the empirical risk. Assuming that the evaluation of * (h,z) on a single exam-
ple takes a constant amount of time, k, the runtime of this exhaustive search

becomes k [HIm, where m is the size of the training set. If we let m to be the

upper bound on the sample complexity mentioned, then the runtime becomes

KH|c log(c|H|/8)/ec.
The linear dependence of the runtime on the size of

H makes this approach
inefficient (and unrealistic) for large classes. Formally, if we define a sequence of

problems(Z con, Hn, n)n=1 such that log(|Hn[) = n, then the exhaustive search

approach yields an exponential runtime. In the example of C++ programs, if
Hn
is the set of functions that can be implemented by a C++ program written in

at most n bhits of code, then the runtime grows exponentially with n, implying
that the exhaustive search approach is unrealistic for practical use. In fact, this
problem is one of the reasons we are dealing with other hypothesis classes, like
classes of linear predictors, which we will encounter in the next chapter, and not
just focusing on finite classes.

It is important to realize that the inefficiency of one algorithmic approach
(such as the exhaustive search) does not yet imply that no efficient ERM imple-
mentation exists. Indeed, we will show examples in which the ERM rule can be
implemented efficiently.
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Axis Aligned Rectangles

Let Hn be the class of axis aligned rectangles in R", namely,

Hn={h(al,...,a Vn,bl,..,bn): iai < by
where

(8.1)
0 otherwise

h(a1 ..... an ,bl,..., b(xl Y) =

Efficiently Learnable in the Realizable Case
Consider implementing the ERM rule in the realizable case. That is, we are given a

training set S = (x1,y1),...,(xm,ym) of examples, such that there exists an

axis aligned rectangle, i — |\ ¢ \uhich hxi) = yi for all i. Our goal is to find

such an axis aligned rectangle with a zero training error, namely, a rectangle
that is consistent with all the labels in S.
We show later that this can be done in time O(nm). Indeed, for each i
€ [n],

set ai = min

{xi: (x,1) € S}and bi = max{xi: (x,1) € S}. In words, we take
ai to be the minimal value of the i'th coordinate of a positive example in S and
bi to be the maximal value of the i’th coordinate of a positive example in S.
It is easy to verify that the resulting rectangle has zero training error and that
the runtime of finding each ai and bi is O(m). Hence, the total runtime of this
Notefficienfi{ndarnable in the Agnostic Case
In the agnostic case, we do not assume that some hypothesis h perfectly predicts
the labels of all the examples in the training set. Our goal is therefore to find
h that minimizes the number of examples for which yi = h(xig. It turns out
that for many common hypothesis classes, including the classes of axis aligned
rectangles we consider here, solving the ERM problem in the agnostic setting is

NP-hard (and, in most cases, it is even NP-hard to find some h
& H whose error

is no more than some constant ¢ > 1 times that of the empirical risk minimizer
n H). That is, unless P = NP, there is no algorithm whose running time is
polynomial in m and n that is guaranteed to find an ERM hypothesis for these
problems (Ben-David, Eiron & Long 2003).

On the other hand, it is worthwhile noticing that, if we fix one specific hypoth-

ggjsiclass, say, axis aligned rectangles in some fixed dimension, n, then there

efficient learning algorithms for this class. In other words, there are successful
agnostic PAC learners that run in time polynomial in 1/€ and 1/6 (but their
dependence on the dimension n is not polynomial).

To see this, recall the implementation of the ERM rule we presented for the
realizable case, from which it follows that an axis aligned rectangle is determined
by at most 2n examples. Therefore, given a training set of size m, we can per-
form an exhaustive search over all subsets of the training set of size at most 2n
examples and construct a rectangle from each such subset. Then, we can pick
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the rectangle with the minimal training error. This procedure is guaranteed to find
an ERM hypothesis, and the runtime of the procedure is mO(n). It follows that if n
is fixed, the runtime is polynomial in the sample size. This does not contradict the
aforementioned hardness result, since there we argued that unless P=NP one
cannot have an algorithm whose dependence on the dimension n is polynomial as
well.

Boolean Conjunctions

A Boolean conjunction is a mapping from X ={0,1}n to Y = {0,1} that can be

expressed as a proposition formula of the form xi
AN AXTA=XA LA =X TR
for some indices i1, ..., ik j1,...,jr
€ [n]. The function that such a proposition
formula defines is

{1ifxi=---=xi=1landxj=---=xj=0h(x)=1k1rOotherwise

Let

HnbetheclassofallBooleanconjunctionsover{01}n.ThesizeofHnC,Cis
at most 3n +1 (since in a conjunction formula, each element of x either appears,
or appears with a negation sign, or does not appear at all, and we also have the
all negative formula). Hence, the sample complexity of learning

ERfitioleiy pbaeribldog(3he) Realizable Case

Next, we show that it is possible to solve the ERM problem for HnCintime
polynomial in n and m. The idea is to define an ERM conjunction by including

in the hypothesis conjunction all the literals that do not contradict any positively
labeled example. Let v1,...,vm+ be all the positively labeled instances in the
input sample S. We define, by induction on i

HnCusingthe

< m+, a sequence of hypotheses
(or conjunctions). Let hO be the conjunction of all possible literals. That is,

hO =Xk _x1 Ax2 A ... A xn A =xn. Note that h0 assigns the label 0 to all the
elements of

X . We obtain hi+1 by deleting from the conjunction hi all the literals
that are not satisfied by vi+1. The algorithm outputs the hypothesis hm+. Note
that hm+ labels positively all the positively labeled examples in S. Furthermore,
forevery i

< m+, hiis the most restrictive conjunction that labels v1,...,vi

positively. Now, since we consider learning in the realizable setup, there exists

a conjunction hypothesis, f €HnC,thatisconsistentwithalltheexamplesin

S. Since hm+ is the most restrictive conjunction that labels positively all the
positively labeled members of S, any instance labeled 0 by f is also labeled 0 by

hm+ . It follows that hm+ has zero training error (w.r.t. S), and is therefore a
legal ERM hypothesis. Note that the running time of this algorithm is O(mn).
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Not Efficiently Learnable in the Agnostic Case

As in the case of axis aligned rectangles, unless P = NP, there is no algorithm
whose running time is polynomial in m and n that guaranteed to find an ERM
hypothesis for the class of Boolean conjunctions in the unrealizable case.

Learning 3-Term DNF

We next show that a slight generalization of the class of Boolean conjunctions
leads to intractability of solving the ERM problem even in the realizable case.
Consider the class of 3-term disjunctive normal form formulae (3-term DNF). The

instance space is o
X =1{0,1}n and each hypothesis is represented by the

Boolean formula of the form h(x) = A1(x)

V A2(x) V A3(x), where each Ai(x) is
a Boolean conjunction (as defined in the previous section). The output of h(x) is
1 if either A1(x) or A2(x) or A3(x) outputs the label 1. If all three conjunctions
output the label 0 then h(x) = 0.

Let
Hn3DNFbethehypothesisclassofallsuch3-termDNFformulae.Thesize
of
Hnost33n.Hence,the Hn3DNFisatm samplecomplexityoflearning3DNFusing
the ERM rule is at most 3n log(3/6)/«.

However, from the computational perspective, this learning problem is hard.
It has been shown (see (Pitt & Valiant 1988, Kearns et al. 1994)) that unless
RP = NP, there is no polynomial time algorithm that properly learns a sequence
of 3-term DNF learning problems in which the dimension of the n’th problem is
n. By “properly” we mean that the algorithm should output a hypothesis that is

a 3-term DNF formula. In particular, since ERM

Hnoutputsa3-termDNF3DNF . . .
formula it is a proper learner and therefore it is hard to implement it. The proof

uses a reduction of the graph 3-coloring problem to the problem of PAC learning
3-term DNF. The detailed technique is given in Exercise 3. See also (Kearns &

¥t AR L asPRt4)-but Not by a Proper ERM

In the previous section we saw that it is impossible to implement the ERM rule

efficiently for the class
Hn3DNFof3-DNFformulae.Inthissectionweshowthatit
is possible to learn this class efficiently, but using ERM with respect to a larger

class.

Representation Independent Learning Is Not Hard

Next we show that it is possible to learn 3-term DNF formulae efficiently. There is
no contradiction to the hardness result mentioned in the previous section as we
now allow “representation independent” learning. That is, we allow the learning
algorithm to output a hypothesis that is not a 3-term DNF formula. The ba- sic
idea is to replace the original hypothesis class of 3-term DNF formula with a
larger hypothesis class so that the new class is easily learnable. The learning



108

8.4

The Runtime of Learning

algorithm might return a hypothesis that does not belong to the original hypoth-
esis class; hence the name “representation independent” learning. We emphasize
that in most situations, returning a hypothesis with good predictive ability is what
we are really interested in doing.

We start by noting that because o
V distributes over A, each 3-term DNF formula

can be rewritten as
vV V
AATVA2VA3Z=(uvW)UEAT,VEA2 WEA3

Next, let us define: {0,1} ={0,1}(2 ) suchthatforeachtripletofliterals
u, v, w there is a variable in the range of { indicating if u
3 V v V wis true or false.
So, for each 3-DNF formula over

{0,1}n there is a conjunction over {0,1}(2n) ,
with the same truth table. Since we assume that the data is realizable, we can

the ERM problem with respec {,}(2n)3solvettotheclassofconjunctionsover0l.

Furthermore, the sample complexity of learning the class of conjunctions in the
higher dimensional space is at most n3 log(1/8)/€. Thus, the overall runtime of
this approach is polynomial in n.

Intuitively, the idea is as follows. We started with a hypothesis class for which
learning is hard. We switched to another representation where the hypothesis
class is larger than the original class but has more structure, which allows for a
more efficient ERM search. In the-ne ion, solving the ERM problem
is easy.

3-term-DNF formulae over (o 1}"

Hardness of Learning*

We have just demonstrated that the computational hardness of implementing
=RM H does not imply that such a class H is not learnable. How can we prove
that a learning problem is computationally hard?

One approach is to rely on cryptographic assumptions. In some sense, cryp-
tography is the opposite of learning. In learning we try to uncover some rule
underlying the examples we see, whereas in cryptography, the goal is to make
sure that nobody will be able to discover some secret, in spite of having access
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to some partial information about it. On that high level intuitive sense, results
about the cryptographic security of some system translate into results about the
unlearnability of some corresponding task. Regrettably, currently one has no way
of proving that a cryptographic protocol is not breakable. Even the common

assumption of P .
6= NP does not suffice for that (although it can be shown to

be necessary for most common cryptographic scenarios). The common approach
for proving that cryptographic protocols are secure is to start with some cryp-
tographic assumptions. The more these are used as a basis for cryptography, the
stronger is our belief that they really hold (or, at least, that algorithms that will
refute them are hard to come by).

We now briefly describe the basic idea of how to deduce hardness of learnabil-
ity from cryptographic assumptions. Many cryptographic systems rely on the
assumption that there exists a one way function. Roughly speaking, a one way
function is a function f:

{0,2}n = {0,1}n (more formally, it is a sequence of
functions, one for each dimension n) that is easy to compute but is hard to in-
vert. More formally, f can be computed in time poly(n) but for any randomized
polynomial time algorithm A, and for every polynomial p(

.)’ —
PIf(A(f(x))) = f(x)] < 1p(n),

where the probability is taken over a random choice of x according to the uniform
%?iﬁ'l?%tr{%qﬁgtergndomness of A.

A one way function, f, is called trapdoor one way function if, for some poly-
nomial function p, for every n there exists a bit-string sn (called a secret key) of

length
£ < p(n), such that there is a polynomial time algorithm that, for every n
and every x
€ {0, 1In, on input (f(x), sn) outputs x. In other words, although
fis hard to invert, once one has access to its secret key, inverting f becomes
feasible. Such functions are parameterized by their secret key.

Now, let Fn be a family of trapdoor functions over

{0,1}n that can be calcu-
lated by some polynomial time algorithm. That is, we fix an algorithm that given
a secret key (representing one function in Fn) and an input vector, it calculates
the value of the function corresponding to the secret key on the input vector in
polynomial time. Consider the task of learning the class of the corresponding

inverses, Hn =
{f-1F:f&Fn}.Sinceeachfunctioninthisclasscanbeinverted

bysomesecretkeysofsizepolynomnHnnialin,theclass

F can be parameter-
ized by these keys and its size is at most 2p(n). Its sample complexity Is therefore

polynomial in n. We claim that there can be no efficient learner for this class. If
there were such a learner, L, then by sampling uniformly at random a polynomial

number of strings in
g {0,1}n, and computing f over them, we could generate a

labeled training sample of pairs (f(x), x), which should suffice for our learner to
figure out an (€,6) approximation of -1 (w.r.t. the uniform distribution over
the range of ), which would violate the one way property of f.

A more detailed treatment, as well as a concrete example, can be found in
(Kearns & Vazirani 1994, Chapter 6). Using reductions, they also show that



110

8.5

8.6

8.7

The Runtime of Learning

the class of functions that can be calculated by small Boolean circuits is not
efficiently learnable, even in the realizable case.

Summary

The runtime of learning algorithms is asymptotically analyzed as a function of
different parameters of the learning problem, such as the size of the hypothe- sis
class, our measure of accuracy, our measure of confidence, or the size of the
domain set. We have demonstrated cases in which the ERM rule can be imple-
mented efficiently. For example, we derived efficient algorithms for solving the
ERM problem for the class of Boolean conjunctions and the class of axis aligned
rectangles, under the realizahility assumption. However, implementing ERM for
these classes in the agnostic case is NP-hard. Recall that from the statistical
perspective, there is no difference between the realizable and agnostic cases
(i.e., a class is learnable in both cases if and only if it has a finite VC-dimension).
In contrast, as we saw, from the computational perspective the difference is im-
mense. We have also shown another example, the class of 3-term DNF, where
implementing ERM is hard even in the realizable case, yet the class is efficiently
learnable by another algorithm.

Hardness of implementing the ERM rule for several natural hypothesis classes

has motivated the development of alternative learning methods, which we will
discuss in the next part of this book.

Bibliographic Remarks

Valiant (1984) introduced the efficient PAC learning model in which the runtime
of the algorithm is required to be polynomial in 1/¢€, 1/8, and the representation
size of hypotheses in the class. A detailed discussion and thorough bibliographic
notes are given in Kearns & Vazirani (1994).

Exercises

1.Let i be the class of intervals on the line (formally equivalent to axis aligned

rectangles in dimension n = 1). Propose an implementation of the ERM
H

learning rule (in the agnostic case) that given a training set of size m, runs
in time 0(m2).
Hint: Use dynamic programming.

2. Let . . e
€ H1,H2,... be a sequence of hypothesis classes for binary classification.
Assume that there is a learning algorithm that implements the ERM rule in
the realizable case such that the output hypothesis of the algorithm for each
class
Hn only depends on O(n) examples out of the training set. Furthermore,
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assume that such a hypothesis can be calculated given these O(n) examples
in time O(n), and that the empirical risk of each such hypothesis can be

evaluated in time O(mn). For example, if ) o
Hn is the class of axis aligned
rectangles in Rn, we saw that it is possible to find an ERM hypothesis in the

realizable case that is defined by at most 2n examples. Prove that in such
cases, it is possible to find an ERM hypothesis for
Hn in the unrealizable case
in time O(mnmO(n)).
3. In this exercise, we present several classes for which finding an ERM classi-
fier is computationally hard. First, we introduce the class of n-dimensional

half ,HS, f d i . .
artspaces ora domain X=Rnn.Thisistheclassofallfunctionsof

the form hw,b(x) = sign(

{w, x) +b)wherew,x € Rn, {w, x) istheirinner
product, and b
€ R. See a detailed description in Chapter 9.

1. Show that ERM

H over the class H = HSn of linear predictors is compu-
tationally hard. Moregrecisely, we consider the sequence of problems in

M@k Bikedimrtron of SR5Rs DR ISR tR&iimber of example SR dndet
to be Sym@hairistarsysiigesod m linear inequalities in n variables, x = (x1,...,xn)),

fin ) o : liti _ . A o
. (Suﬁﬁfgsﬁygt@mzﬁ%mg§W§ HigriesiBRSTHS thatfrbivirb HPoh
rI]tbhas been shown (Sankaran 1993) that the problem Max FS is NP-hard.

Show that any algorithm that finds an ERMHS hypothesis for any training

lem

XxbAmx

sample S
€ (Rn x{+1, -1})m can be used to solve the Max FS problem of

size m,n. Hint: Define a mapping that transforms linear inequalities in n
variables into labeled points in Rn, and a mapping that transforms vectors
in Rn to halfspaces, such that a vector w satisfies an inequality q if and
only if the labeled point that corresponds to q is classified correctly by the
halfspace corresponding to w. Conclude that the problem of empirical risk
minimization for halfspaces in also NP-hard (that is, if it can be solved in
time polynomial in the sample size, m, and the Euclidean dimension, n,

then every problem in the class NP can be solved in polynomial time).

2. Let

X =Rn and let Hnk be the class of all intersections of k-many linear
halfspaces in Rn. In this exercise, we wish to show that ERM

Hniscom-k
putationally hard for every k . .
> 3. Precisely, we consider a sequence of

problems where k

> 3is a constant and n grows linearly. The training set

._Giyen I = ; a number k, determine whether there existsa so
mz%\@g%ﬁs&é}@wglweaﬂfmz@ or every (u,v) E, f(u) = f(v). )
wards this g{Qal, consider the k-coloring problem for%raphs, desfl?ﬁd as
arp

follbgsk-coloring problem is known to be NP-hard for every k>
1972).
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WF:Wﬁ?st?or&%%?the k-coloring problem to ERM

that if thére is an algorithm that solves the ERM

Hnproblemintimek . . N
polynomial in k, n, and the sample size m, then there is a polynomial time

algorithm for the graph k-coloring problem.
Given a graph G = (V,E), let o
{vl...vn}be the verticesin V. Construct
a sample S(G)
€ (Rn x {+1})m, where m = |V | + |E|, as follows:
« For every vi € V, construct an instance ei with a negative label.

« For every edge (vi,vj) € E, construct an instance (ei + ej)/2 with a

positive label.

1. Prove that if there exists some h
€ Hn that has zero error over ()

then is -colo

MNkSGGkrable.kHint:Leth=hbenj=1janERMclassifierinHkoverS.DefineacoloringofVbysettingf(vi)tobeth
Use the fact that halfspaces are convex sets to show that it cannot be
true that two vertices that are connected by an edge have the same
color.
2. Prove that if G is k-colorable then there exists some h

€ Hnk that has
zero error over S(G).

Hint: Given a coloring f of the vertices of G, we should come up with k

hyperplanes, hl ... hk whose intersection is a perfect classifier for S(G).
Let b = 0.6 for all of these hyperplanes and, for t <k let the i'th weight

of the t’th hyperplane, wt,i, be
-1 if f(vi) = t and 0 otherwise.
3. Based on the above, prove that for any k

>3,theERMHnproblemisk
NP-hard.

4. In this exercise we show that hardness of solving the ERM problem is equiv-
alent to hardness of proper PAC learning. Recall that by “properness” of the
algorithm we mean that it must output a hypothesis from the hypothesis
class. To formalize this statement, we first need the following definition.

definition8.2 ThecomplexityclassRandomizedPolynomial(RP)time
is the class of all decision problems (that is, problems in which on any instance
one has to find out whether the answer is YES or NO) for which there exists a
probabilistic algorithm (namely, the algorithm is allowed to flip random coins
while it is running) with these properties:
 Onanyinputinstancethealgorithmrunsinpolynomialtimeintheinput
size.
« IfthecorrectanswerisNO,thealgorithmmustreturnNO.
« If the correct answer is YES, the algorithm returns YES with probability

g 1/2 and returns NO with probability 1 - a.1
Clearly the class RP contains the class P. It is also known that RP is

contained in the class NP. It is not known whether any equality holds among
these three complexity classes, but it is widely believed that NP is strictly

1
The constant 1/2 in the definition can be replaced by any constantin (0, 1).
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larger than RP. In particular, it is believed that NP-hard problems cannot be
solved by a randomized polynomial time algorithm.
« Show that if a class H is properly PAC learnable by a polynomial time

algorithm, then the ERM o ) )
H problem is in the class RP. In particular, this

implies that whenever the ERM
H problem is NP-hard (for example, the
class of intersections of halfspaces discussed in the previous exercise),
then, unless NP = RP, there exists no polynomial time proper PAC
learning algorithm for
H.
Hint: Assume you have an algorithm A that properly PAC learns a

class H in time polynomial in some class parameter n as well as in 1/¢€

and 1/&. Your goal is to use that algorithm as a subroutine to contract
an algorithm B for solving the ERM

time. Given a training set, S

H problem in random polynomial

€ (X x {#1}m), and some h € H whose
error on S is zero, apply the PAC learning algorithm to the uniform
distribution over S and run it so that with probability > 0.3t finds a

function h
€ H that has error less than € = 1/|S]| (with respect to that
uniform distribution). Show that the algorithm just described satisfies
}_h(:: requirements for being a RP solver for ERM
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Linear Predictors

In this chapter we will study the family of linear predictors, one of the most
useful families of hypothesis classes. Many learning algorithms that are being
widely used in practice rely on linear predictors, first and foremost because of
the ability to learn them efficiently in many cases. In addition, linear predictors
are intuitive, are easy to interpret, and fit the data reasonably well in many
natural learning problems.

We will introduce several hypothesis classes belonging to this family — halfspaces,
linear regression predictors, and logistic regression predictors — and present rele-
vant learning algorithms: linear programming and the Perceptron algorithm for
the class of halfspaces and the Least Squares algorithm for linear regression.

This chapter is focused on learning linear predictors using the ERM approach;
however, in later chapters we will see alternative paradigms for learning these
hypothesis classes.

First, we define the class of affine functions as

Ld=

{hw,b : w € Rd, b € R},
where

hw,o(X)= (WX} +b=(zdi=%/vixi) + b.

It will be convenient also to use the notation

L =
{x—=7 {+:ddw,x) bw&ER,b&ER},
which reads as follows: Ld is a set of functions, where each function is parame-

terized by W < pqand b € R, and each such function takes as input a vector x

and returns as output the scalar
(w, x> +bh.
The different hypothesis classes of linear predictors are compositions of a func-

tion¢:R — Y on Ld. For example, in binary classification, we can choose ¢ to
be the sign function, and for regression problems, where
Y=R,@is simply&ne><
identity function. c
It may be more convenient to incorporate b, called the bias, into w as an
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Rd*1 Therefore,
hw (x)=
(w,x> +b= <w',x",b ) .
It follows that each affine function in Rd can be rewritten as a homogenous linear
function in Rd+1 applied over the transformation that appends the constant 1
to each input vector. Therefore, whenever it simplifies the presentation, we will

omit the bias term and refer to Ld as the class of homogenous linear functions
of the form hw(x) =
(w, x> .
Throughout the book we often use the general term “linear functions” for both
affine functions and (homogenous) linear functions.

9.1 Halfspaces

The first hypothesis class we consider is the class of halfspaces, designed for

binary classification problems, namely,
X =Rdand Y ={-1,+1}. The class of

halfspaces is defined as follows:

HSd = sign
o Ld={x—7sign(hw,b(x)):hw,bELd}.
In other words, each halfspace hypothesis in HSd is parameterized by w

e
Rd and b
€ R and upon receiving a vector x the hypothesis returns the label
sign(
{w, x> +b).

To illustrate this hypothesis class geometrically, it is instructive to consider
the case d = 2. Each hypothesis forms a hyperplane that is perpendicular to the
vector w and intersects the vertical axis at the point (0,

S -b/w2). The instances
that are “above” the hyperplane, thaiNg, share an acute angle with w, are labeled
positively. Instances that are “below hyperplane, that is, share an obtuse

angle with w, are labeled negativély.”

Q)

=]

s,
’

W+ ‘

(InSection)9.1.3wewillshowthatVCdim(HSd)=d+1.ItfollowsthatwecanlearnhalfspacesusingtheERMpz
We introduce below two solutions to finding an ERM halfspace in the realiz-
able case. In the context of halfspaces, the realizable case is often referred to as
the “separable” case, since it is possible to separate with a hyperplane all the
positive examples from all the negative examples. Implementing the ERM rule
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in the nonseparable case (i.e., the agnostic case) is known to be computationally
hard (Ben-David & Simon 2001). There are several approaches to learning non-
separable data. The most popular one is to use surrogate loss functions, namely,
to learn a halfspace that does not necessarily minimize the empirical risk with

the0
-1 loss, but rather with respect to a diffferent loss function. For example,

in Section 9.3 we will describe the logistic regression approach, which can be
implemented efficiently even in the nonseparable case. We will study surrogate
loss functions in more detail later on in Chapter 12.

Linear Programming for the Class of Halfspaces

Linear programs (LP) are problems that can be expressed as maximizing a linear
function subject to linear inequalities. That is,

max
SR W

subjectto Aw
>V
where w
€ Rd is the vector of variables we wish to determine, A is an m x
d matrix, and v
€ Rm,u € Rd are vectors. Linear programs can be solved
efficiently,1 and furthermore, there are publicly available implementations of LP
solvers.
We will show that the ERM problem for halfspaces in the realizable case can
be expressed as a linear program. For simplicity, we assume the homogenous
case. lLetS=

_ {(x)mi,yiti=1beatrainingsetofsizem.Sinceweassumethe
realizable case, an ERM predictor should have zero errors on the training set.

Thatols we are lookmg for some vector w
for which

sign(

{w,xiy )=yi, Vi=1,...,m.
Equivalently, we are looking for some vector w for which
yi

{w,xiy >0, Vi=1,...,m.
Let w* be a vector that satisfies this condition (it must exist since we assume
Fealizability). Define y = mini(y

{w*i,x) W~ wi)andlet=y.Therefore,foralli
we have

1
- . .
Yiw XD =y Awxi xiy 21y
We have thus shown that there exists a vector that satisfies
1_ Namely, in time polynomial in m,d , and in the representation size of real numbers.

yi
{w,xiy 21,Vi=1,....m. (9.1)
And clearly, such a vector is an ERM predictor.

To find a vector that satisfies Equation (9.1) we can rely on an LP solver as
follows. Set A to be the m
x d matrix whose rows are the instances multiplied
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by yi. Thatis, Ai,j=yix ij, where xi,j is the 'th element of the vector xi. Let
v be the vector (1, .. ., 1)e Rm. Then, Equation (9.1) can be rewritten as

> Aw v,

The LP form requires a maximization objective, yet all the w that satisfy the
constraints are equal candidates as output hypotheses. Thus, we set a “dummy”
objective,u=(0,...,0)
€ERd.

Perceptron for Halfspaces

A different implementation of the ERM rule is the Perceptron algorithm of
Rosenblatt (Rosenblatt 1958). The Perceptron is an iterative algorithm that
constructs a sequence of vectors w(1),w(2),.... Initially, w(1) is set to be the all-
zeros vector. At iteration t, the Perceptron finds an example i that is mis- labeled

by w(t), namely, an example for which sign(
Y g P . {w(t),xi> ) 6=yi. Then, the

Perceptron updates w(t) by adding to it the instance xi scaled by the label yi.
That is, w(t+1) = w(t) + yixi. Recall that our goal is to have yi

alli and note that

{w, xiy > 0 for

y
(w(t+1)=ti,xi) y {w()i+yixi,x> = {w(t)iyi,xi) +|x]|2i.
Hence, the update of the Perceptron guides the solution to be “more correct” on

the i'th example. Batch Perceptron
input:  Atraining set (x1,y1),...,(xmyn)
initia@&: W .0
for =12,

( ifwxj, D) then
wow3is ty ((D)iltpd)
else = (1)+1

output w(t)

The following theorem guarantees that in the realizable case, the algorithm
stops with all sample points correctly classified.

theorem9.1 Assumethat(x1,y1),...,(xm,ym)isseparable,letB=min

{lwl
Vi€[m],yi {w,xi) >1},andletR=maxi||xi||.Then,thePerceptronal-
gorithm stops after at most (RB)2 iterations, and when it stops it holds that
Vi € [m], yi {w(t),xiy >0.

Proof Bythedefinitionofthestoppingcondition,ifthePerceptronstopsit
must have separated all the examples. We will show that if the Perceptron runs

for T iterations, then we must have T
< (RB)2, which implies the Perceptron

must stop after at most (RB)2 iterations.
Let w? be a vector that achieves the minimum in the definition of B. That is,
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Y (2w xi) 21foralli, and among all vectors that satisfy these constraints, w?
is of minimal norm.

The idea of the proof is to show that after per ~formingTiterations, thecosine

of the angle between w? and w(T+1) is at least T ™
v —RB. That is, we will show that
(w?, w(T +1)> -
lw?|[[lw(T+1)|| RB
By the Cauchy-Schwartz inequality, the left-hand side of Equation (9.2) is at

most 1. Therefore, Equation (9.2) would imply that
¥ i

>T. (9.2)

>T1=T<(RB)2,RB
which will conclude our proof.
To show that Equation (9.2) holds, we first show that
(w?,w(T+1)) > T.
Indeed, at the first iteration, w(1) = (0,...,0) and therefore
{w?,w(1)) =0,
while on iteration t, if we update using example (xi, yi) we have that

Cw?, w(t+1)) - <w?, w(t)) = <(w?, w(t+1) - w(t))

(w?,y y 2ixiy =i {w,xi)
>1.

Therefore, after performing T iterations, we get:

ST() <w?2,w(T+1)) = {w?,w(t+1)) - {w?,w(t)) =T,(9.3)t=1

as required.

Nesdt welpder Bowtt) + yixi||2

Ilw(T+1)||. For each iteration t we have that
lw(t)||2+2y {w(t)i,xiy +y2i||xi]|2
<||w(t)]|2+R2 (9.4)

where the last inequality is due to the fact that example i is necessarily such

that .. .. .
aty {w(t)i,xiy <0,andthenormofxiisatmostR.Now,since||w(1)||2=0,

if we use Equation (9.4) recursively for T iterations, we obtain that
Vv
|[w(T+21)||2<TR2=||w(T+1)||<TR. (9.5)

Combining Equation (9.3) with Equation (9.5), and using the fact that
fw?] =

B, we obtain that

Vv
(w(T +1), w?)

>V =

Tw?]||[w(T+1)|| B TR BR

We have thus shown that Equation (9.2) holds, and this concludes our proof.
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Remark9.1 ThePerceptronissimpletoimplementandisguaranteedtocon- verge.
However, the convergence rate depends on the parameter B, which in some
situations might be exponentially large in d. In such cases, it would be better to
implement the ERM problem by solving a linear program, as described in the
previous section. Nevertheless, for many natural data sets, the size of B is not too
large, and the Perceptron converges quite fast.

The VC Dimension of Halfspaces
To compute the VC dimension of halfspaces, we start with the homogenous case.

theorem9.2 TheVCdimensionoftheclassofhomogenoushalfspacesinRd
isd.

Proof  First, consider the set of vectors el,...,ed, where for every i the vector
g is the all zeros vector except 1 in the i'th coordinate. This set is shattered

by the class of homogenous halfspaces. Indeed, for every labeling y1,...,yd, set

Wy - =Sl 3¢ then

Next,letx1,...,x+1beasetofd+1vectorsinRdd.Then,theremustexist

P&31 numbers a1,...,ad+1, not all of them are zero, such that iZ:] aixi = 0
LetI=
{izai>0}and J ={j:aj <0} Either I orJis nonempty. Let us

first assume that both gfsthegm are nonempty. Then,

gixi = d
Naaj suppoge that x1, . .., x +1 are shattered by the clasg bKidmogenous classes.
Then, there must exist a vector w such that (w,xiy >0foralli €Iwhile

{w, xj> <0 foreveryj € J.]It follows that
(g7 <3j9

S0<ai {xi,w) =aixi,w=|aj|xj,w=|ajxj,w) <0,i€Eliclee
which leads to a contradiction. Finally, if J (respectively, I) is empty then the

right-most (respectively, left-most) inequality should be replaced by an equality,
which still leads to a contradiction. O

theorem9.3 TheVCdimensionoftheclassofnonhomogenoushalfspacesin

Rdisd+1.

Proof First,asintheproofofTheorem9.2,itiseasytoverifythattheset

of vectors 0, el, . . ., ed is shattered by the class of nonhomogenous halfspaces.
Second, suppose that the vectors x1, . . ., xd+2 are shattered by the class of non-
homogenous halfspaces. But, using the reduction we have shown in the beginning
of this chapter, it follows that there are d + 2 vectors in Rd+1 that are shattered

by the class of homogenous halfspaces. But this contradicts Theorem 9.2. o
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Figure 9.1 Linear regression for d = 1. For instance, the x-axis may denote the age of
the baby, and the y-axis her weight.

Linear Regression

Linear regression is a common statistical tool for modeling the relationship be-
tween some “explanatory” variables and some real valued outcome. Cast as a

learning problem, the domain set
X'is a subset of Rd, for some d, and the la-

bel set
Y is the set of real numbers. We would like to learn a linear function
h:Rd
- R that best approximates the relationship between our variables (say,
for example, predicting the weight of a baby as a function of her age and weight
at birth). Figure 9.1 shows an example of a linear regression predictor for d = 1.
The hypothesis class of linear regression predictors is simply the set of linear
functions,
Hreg=L=x7 {w,x+b:wdd{») €ER,bER}.

Next we need to define a loss function for regression. While in classification the
definition of the loss is straightforward, as " (h,(x,y)) simply indicates whether
h(x) correctly predicts y or not, in regression, if the baby’s weight is 3 kg, both the
predictions 3.00001 kg and 4 kg are “wrong,” but we would clearly prefer the
former over the latter. We therefore need to define how much we shall be
“penalized” for the discrepancy between h(x) and y. One common way is to use
the squared-loss function, namely,

“(h, (x, ) = (h(x)

- y)2.
For this loss function, the empirical risk function is called the Mean Squared
Error, namely,

ym1LS(h)=(h(xi)-y2i).mi=1
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In the next subsection, we will see how to implement the ERM rule for linear
regression with respect to the squared loss. Of course, there are a variety of other
loss functions that one can use, for example, the absolute value loss function,

(h, (x, ) = .
[h(x) - y|. The ERM rule for the absolute value loss function can
be implemented using linear programming (see Exercise 1.)

Note that since linear regression is not a binary prediction task, we cannot an-
alyze its sample complexity using the VC-dimension. One possible analysis of the
sample complexity of linear regression is by relying on the “discretization trick”
(see Remark 4.1 in Chapter 4); namely, if we are happy with a representation of
each element of the vector w and the bias b using a finite number of bits (say
a 64 bits floating point representation), then the hypothesis class becomes finite
and its size is at most 264(d+1). We can now rely on sample complexity bounds
for finite hypothesis classes as described in Chapter 4. Note, however, that to
apply the sample complexity bounds from Chapter 4 we also need that the loss
function will be bounded. Later in the book we will describe more rigorous means
to analyze the sample complexity of regression problems.

Least Squares

Least squares is the algorithm that solves the ERM problem for the hypoth- esis
class of linear regression predictors with respect to the squared loss. The ERM
problem with respect to this class, given a training set S, and using the
homogenous version of Ld, is to find

argmin LS(h\}v\\/f) =argmin —IM&y, xp - Vi

To solve the problem we calculate the gradient of the objective function and
compare it to zero. That is, we need to solve

7 ' )
5( {w,xmi=1 y - yxi=0.

We can rewrite the problem as the problem A w = b where

(>)m=xx>iii=1

A and b= >myxiz1 (9.6)
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Or, in matrix form:

>
O ... O
A=x1...xm x1...xm, (9.7)
ad ooo
Ha00
- O 0 ad
O O
0.yl
0 oo
ooo

[Ib=.x1...xm..D.(9.8)..ﬂ.ym
If Ais invertible thenﬁhe solution to the ERM problem is
O w =A-1b.

The case in which A is not invertible requires a few standard tools from linear
algebra, which are available in Appendix C. It can be easily shown that if the
training instances do not span the entire space of Rd then A is not invertible.
Nevertheless, we can always find a solution to the system Aw = b because b
is in the range of A. Indeed, since A is symmetric we can write it using its
eigenvalue decomposition as A =V DV >, where D is a diagonal matrix and V
is an orthonormal matrix (that is, V >V is the identity d

x d matrix). Define
D+ to be the diagonal matrix such that D+

i,i=0if Di,i = 0 and otherwise
D+
i,i = 1/Di,i. Now, define

A+=VD+V> and W"=A+b.

Let vi denote the i’th column of V.. Then, we have

Sirafis: Al stber/ pieatipneihentetyesprrothespyertsrsvioreich Dii = 0. Since
the ligear span of x1,...,xm is the same as the linear span of those vi, and b is in
the linear span of the xi, we obtain that AW" = b, which

concludes our argument.

Linear Regression for Polynomial Regression Tasks

Some learning tasks call for nonlinear predictors, such as polynomial predictors.
Take, for instance, a one dimensional polynomial function of degree n, that is,

p(x)=a+ax+ 2+
-+ n0 1 a2x anx
where (a0,...,an) is a vector of coefficients of size n + 1. In the following we

depict a training set that is better fitted using a 3rd degree polynomial predictor
than using a linear predictor.
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We will focus here on the class of one dimensional, n-degree, polynomial re-
gression predictors, namely,

Hnpoly = {x =7 p(x)},

where p is a one dimensional polynomial of degree n, parameterized by a vector

of coefficients (a0,...,an). Note that

X =R, since this is a one dimensional
polynomial, and
Y =R, as this is a regression problem.

One way to learn this class is by reduction to the problem of linear regression,
which we have already shown how to solve. To translate a polynomial regression
problem to a linear regression problem, we define the mapping ¢ : R

- Rn+1
such that (x) = (1, x, X2, . . ., xn). Then we have that

p(P(x))=a+ax+ax2+
~-+axn012n= {a,P(x))
and we can find the optimal vector of coefficients a by using the Least Squares

PEBILER Reefrassiatier

In logistic regression we learn a family of functions h from Rd to the interval [0,
1]. However, logistic regression is used for classification tasks: We can interpret
h(x) as the probability that the label of x is 1. The hypothesis class associated
with
logistic regression is the composition of a sigmoid function sig : R

- [0, 1] over
the class of linear functions Ld. In particular, the sigmoid function used in logistic
regression is the logistic function, definedas——
1

1 4 8xp(

The name “sigmoid” means “S-shaped,” referring to the plot of this function,

shown in the figure: //_

psig(2)= . (9.9)
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The hypothesis class is therefore (where for simplicity we are using homogenous
linear functions):

Hsig = @sig
oLld={x=>7¢@sig( {w,x) ):w&Rd}.
Note that when
{w,x> is very large then @sig( {w,x> ) is close to 1, whereas if
{w, x> is very small then sig( {w, x> ) is close to 0. Recall that the prediction of the

halfspace corresponding to a vector w is sign( (w, x) ). Therefore, the predictions

of the halfspace hypothesis and the logistic hypothesis are very similar whenever

| {w,x> |islarge.However,when| {w,x) l|isclosetoOwehavethatsig( {w,x) )=1

2. Intuitively, the logistic hypothesis is not sure about the value of the label so it
guesses that the label is sign( . o
{w,x> ) with probability slightly larger than 50%.

In contrast, the halfspace hypothesis always outputs a deterministic prediction

QE?EOBH H w,xd s very close to 0.

Next, we need to specify a loss function. That is, we should define how bad it

is to predict some hw(x) € [0, 1] given that the true label is y € {+1}. Clearly,
we would like that hw(x) would be targe ify=Tandthatz~ —

- hw(x) (i.e., the
probability of predicting
-1) would be large if y = -1. Note that MOBN

- —1exp(- <w,x) ) 11hw(x)=1 = = .1+exp(
- <w,x) ) 1+exp(= <w,x) ) 1+exp( {w,x> )
Therefore,anyreasonablelossfunctionwouldincreasemonotonicallywith 1

1+exp(y

or equivalently, would increase monotonically with 1 + exp(
-y {w,x> ). The lo-

gistic loss function used in logistic regression penalizes hw based on the log of

1y+ %P&) ) (recall that log is.a monotonic functi_on).<That is,

“(hw, (x,y)) = log (1 + exp(

Fiye Galyantage of the logistic loss function is that it is a convex function with
respect to w; hence the ERM problem can be solved efficiently usin% standard
H?ﬁﬁ%f@sr.emfévﬁ/ﬂlastﬁ?dv”ﬁ%\ﬁefos Bt With: oo B RindfiSER oI g B Hicular
apeematedimple @gistiehiad@ssiMingizing convex functions, in later chapters.

The ERM problem associated with logistic regression (Equation (9.10)) is iden-
tical to the problem of finding a Maximum Likelihood Estimator, a well-known
Srasiegroin pglfoeexplyivinding) the. padarkeRstthat maximize the joint probabil-
ity of a given data set assuming a specific parametric probability function. We
will study the Maximum Likelihood approach in Chapter 24.
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Summary

The family of linear predictors is one of the most useful families of hypothesis
classes, and many learning algorithms that are being widely used in practice rely
on linear predictors. We have shown efficient algorithms for learning linear
predictors with respect to the zero-one loss in the separable case and with
respect to the squared and logistic losses in the unrealizable case. In later
chapters we will present the properties of the loss function that enable efficient
learning.
Naturally, linear predictors are effective whenever we assume, as prior knowl-
edge, that some linear predictor attains low risk with respect to the underlying
distribution. In the next chapter we show how to construct nonlinear predictors
by composing linear predictors on top of simple classes. This will enable us to
employ linear predictors for a variety of prior knowledge assumptions.

Bibliographic Remarks

The Perceptron algorithm dates back to Rosenblatt (1958). The proof of its
convergence rate is due to (Agmon 1954, Novikoff 1962). Least Squares
regression goes back to Gauss (1795), Legendre (1805), and Adrain (1808).

Exercises

1. Show how to cast the ERM problem of linear regression with respect to the

absolute value loss function, " (h,(x,y)) = _
[h(x) - yl, as a linear program;

namely, show how to write the p

yroblemmmin | {w,xiy -yilwi=1
as a linear program.

Hint: Start with proving that for any c
ER,

|c|=minas.t.ccaandc>-a.a

20

2. Show that the matrix A defined in Equation (9.6) is invertible if and only if
xxd1,...,mspanR.

3. Show that Theorem 9.1 is tight in the following sense: For any positive integer

i * .
m, there exist a vector w € Rd (for some appropriate d) and a sequence of

examples
{(x1,y1), ..., (xm, ym)}such that the following hold:
 R=maxi|xi||<1. V—
. [Jw* ||2=m,andfo{re“ligm,\§/ (xew*i i, > 21.N%tetﬁat},ugingthenotation
in Theorem 9.1, we therefore get

B=min w :i[m], yi
{w,xi 1 m.
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thﬂ(BR)Z
« When running the Perceptron on this sequence of examples it makes m
updates before converging.
Hint: Choose d = m and for every i choose xi = ei.
4. (*) Given any number m, find an example of a sequence of labeled examples
((x1,y1), ..., (xm, ym))
€ (R3 x {-1,+1})m on which the upper bound of
Theorem 9.1 equals m and the perceptron algorithm is bound to make m
mistakes.
Hint: Set each xi to be a third dimensional vector of the form (a, b, yi), where

a2+b2=R2 - 1. Let w* be the vector (0,0,1). Now, go over the proof of
the Perceptron’s upper bound (Theorem 9.1), see where we used inequalities

( <) rather than equalities (=), and figure out scenarios where the inequality

actually holds with equality.

5. Suppose we modify the Perceptron algorithm as follows: In the update step,
instead of performing w(t+1) = w(t) + yixi whenever we make a mistake, we

perform w(t+1) = w(t) + nyixi for some n > 0. Prove that the modified Per-
ceptron will perform the same number of iterations as the vanilla Perceptron

and will converge to a vector that points to the same direction as the output
of the vanilla Perceptron.
6. In this problem, we will get bounds on the VC-dimension of the class of
(closed) balls in Rd, that is,

BV8)¢BY,r:vER,r>0},
{2if||x-v||<rBv,r(x)=.0otherwise

1. Consider the mapping ¢ : Rd
- Rd+1 defined by @(x) = (x,[|x||2). Show
that if x1, ..., xm are shattered by

Bd then @(x1), ..., @(xm) are shattered
by the class of halfspaces in Rd+1 (in this question we assume that sign(0) =

%)d)\{}/hat does this tell us about VCdim(

2. (*) Find a set of d+1 points in Rd that is éhayered by
- Bd. Conclude that

d+1
<VCdim(d) d+2.
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Boosting is an algorithmic paradigm that grew out of a theoretical question and
became a very practical machine learning tool. The boosting approach uses a
generalization of linear predictors to address two major issues that have been
raised earlier in the book. The first is the bias-complexity tradeoff. We have seen
(in Chapter 5) that the error of an ERM learner can be decomposed into a sum of
approximation error and estimation error. The more expressive the hypothesis
class the learner is searching over, the smaller the approximation error is, but the
larger the estimation error becomes. A learner is thus faced with the problem of
picking a good tradeoff between these two considerations. The boosting
paradigm allows the learner to have smooth control over this tradeoff. The
learning starts with a basic class (that might have a large approximation error),
and as it progresses the class that the predictor may belong to grows richer.

The second issue that boosting addresses is the computational complexity of
learning. As seen in Chapter 8, for many interesting concept classes the task
of finding an ERM hypothesis may be computationally infeasible. A boosting
algorithm amplifies the accuracy of weak learners. Intuitively, one can think of
a weak learner as an algorithm that uses a simple “rule of thumb” to output a
hypothesis that comes from an easy-to-learn hypothesis class and performs just
slightly better than a random guess. When a weak learner can be implemented
efficiently, boosting provides a tool for aggregating such weak hypotheses to
approximate gradually good predictors for larger, and harder to learn, classes.

In this chapter we will describe and analyze a practically useful boosting algo-
rithm, AdaBoost (a shorthand for Adaptive Boosting). The AdaBoost algorithm
outputs a hypothesis that is a linear combination of simple hypotheses. In other
words, AdaBoost relies on the family of hypothesis classes obtained by
composing a linear predictor on top of simple classes. We will show that

AdaBoost enables us to control the tradeoff between the approximation and

estimation errors by
varying a single parameter.

AdaBoost demonstrates a general theme, that will recur later in the book, of
expanding the expressiveness of linear predictors by composing them on top of
other functions. This will be elaborated in Section 10.3.

AdaBoost stemmed from the theoretical question of whether an efficient weak
learner can be “boosted” into an efficient strong learner. This question was
raised

Understanding Machine Learning, ©c2014byShaiShalev-ShwartzandShaiBen-David
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by Kearns and Valiant in 1988 and solved in 1990 by Robert Schapire, then a
graduate student at MIT. However, the proposed mechanism was not very
practical. In 1995, Robert Schapire and Yoav Freund proposed the AdaBoost
algorithm, which was the first truly practical implementation of boosting. This
simple and elegant algorithm became hugely popular, and Freund and Schapire’s
work has been recognized by numerous awards.
Furthermore, boosting is a great example for the practical impact of learning
theory. While boosting originated as a purely theoretical problem, it has led to
popular and widely used algorithms. Indeed, as we shall demonstrate later in this
chapter, AdaBoost has been successfully used for learning to detect faces in
images.

Weak Learnability

Recall the definition of PAC learning given in Chapter 3: A hypothesis class,

H,isPAClearnableifthereexistm 2H:(0,1)—>Nandalearningalgorithm

with the following property: For every g, & € (0, 1), for every distribution D over

X, and for every labeling function f : X — {+1}, if the realizable assumption

holds with respect to H,D,f, then when running the learning algorithm on

m
> mH(g,6) i.i.d. examples generated by D and labeled by f, the algorithm
returns a hypothesis h such that, with probability of at least 1
-6, L(D,f)(h) < &.
Furthermore, the fundamental theorem of learning theory (Theorem 6.8 in
Chapter 6) characterizes the family of learnable classes and states that every PAC
learnable class can be learned using any ERM algorithm. However, the definition
of PAC learning and the fundamental theorem of learning theory ignores the
computational aspect of learning. Indeed, as we have shown in Chapter 8, there
are cases in which implementing the ERM rule is computationally hard (even in
the realizable case).
However, perhaps we can trade computational hardness with the requirement
for accuracy. Given a distribution
D and a target labeling function f, maybe there
exists an efficiently computable learning algorithm whose error is just slightly
better than a random guess? This motivates the following definition.

definition 10.1 (y-Weak-Learnability)

- Alearningalgorithm,A,isay-weak-learnerforaclassHifthereexistsafunc-

tion m
H:(0,1) = N such that for every & € (0,1), for every distribution
D over X, and for every labeling function f : X — {+1}, if the realizable

assumption holds with respect to H,D,f, then when running the learning

algorithm on m

> mH(8) i.i.d. examples generated by D and labeled by f,
the algorithm returns a hypothesis h such that, with probability of at least

Ls, LD,Hhy<1/2 -y.
« A hypothesis class H is y-weak-learnable if there exists a y-weak-learner for
that class.
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This definition is almost identical to the definition of PAC learning, which

here we will call strong learning, with one crucial difference: Strong learnability
implies the ability to find an arbitrarily good classifier (with error rate at most

€ for an arbitrarily small € > 0). In weak learnability, however, we only need to

output a hypothesis whose error rate is at most 1/2
-y, namely, whose error

rate is slightly better than what a random labeling would give us. The hope is
that it may be easier to come up with efficient weak learners than with efficient
(full) PAC learners.
The fundamental theorem of learning (Theorem 6.8) states that if a hypothesis
class
H has a VC dimension d, then the sample complexity of PAC learning H
satisfies m (g,5)

12 >Cd+log(1/8)H1e,whereClisaconstant.Applyingthiswith
€=

-y we immediately obtain that if d = o then H is not y-weak-learnable.
This implies that from the statistical perspective (i.e., if we ignore computational

complexity), weak learnability is also characterized by the VC dimension of H

and therefore is just as hard as PAC (strong) learning. However, when we do
consider computational complexity, the potential advantage of weak learning is
that maybe there is an algorithm that satisfies the requirements of weak learning
and can be implemented efficiently.

One possible approach is to take a “simple” hypothesis class, denoted B, and
to apply ERM with respect to B as the weak learning algorithm. For this to
work, we need that B will satisfy two requirements:

« ERMB is efficiently implementable.

« For every sample that is labeled by some hypothesis from H, any ERMB
hypothesis will have an error of at most 1/2

-y .
Then, the immediate question is whether we can boost an efficient weak learner

into an efficient strong learner. In the next section we will show that this is
indeed possible, but before that, let us show an example in which efficient weak

e nuline RiNgSShase hypothesis class B.
Example 10.1 (Weak Learning of 3-Piece Classifiers Using Decision Stumps)
Let

81, 62
€ R,01<82, b€ {£1}}, wh

X =R and let H be the class of 3-piece classifiers, namely, H = {h81,62,b :

{ereforeveryx,+bifx<910rx>92!191,92,b(x)= :
-b ifB1<x<B62 6, 5]

An example hypothesis (for b = 1) is illustrated as follows:
Let B be the class of Decision Stumps, thatis,= 2 ;x, pign(x ~0)-b: 6€

ﬁl
k. € {+1}}. In the following we show that EBMB is a
fory=1/12.

Y-weak learner for H ,
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To see that, we first show that for every distribution that is consistent with

H, there exists a decision stump with LD(h) < 1/3. Indeed, just note that

every classifier in . .
y H consists of three regions (two unbounded rays and a center

interval) with alternate labels. For any pair of such regions, there exists a decision
stump that agrees with the labeling of these two components. Note that for every
distribution
D over R and every partitioning of the line into three such regions,
one of these regions must have
D-weight of at most 1/3. Let h € H be a zero
error hypothesis. A decision stump that disagrees with h only on such a region
has an error of at most 1/3.
Finally, since the VC-dimension of decision stumps is 2, if the sample size is
greater than Q(log(1/8)/€2), then with probability of at least 1 ~ &, the ERMB

rule returns a hypothesis with an error of at most 1/3 + €. Setting € =1/12 we
Obltili%that the error of ERMB is at most 1/3 + 1/12 =1/2

We see that ERMB is a y-weak learner for
Efficient Implementation of ERM for Decision|StyBWsxt show how to implement

E'éi@ﬂ;r&le 5&@%8“&%@%chﬂawﬁﬂmﬁésis class of decision stumps over RY,

namely,
HDS =

{x=>7sign(B-xi)-b:8€ERrR,ie[d],be{+x1}}.

For simplicity, assume that b = 1; that is, we focus on all the hypotheses in

HDS of the form sign(8 - xi). Let S = ((x1, y1), ..., (xm, ym)) be a training set.
We will show how to implement an ERM rule, namely, how to find a decision

stump that minimizes LS(h). Furthermore, since in the next section we will
show that AdaBoost requires finding a hypothesis with a small risk relative to

some distribution over S, we will show here how to minimize such risk functions.
Concretely, let D

YbeaprobabilityvectorinRm(thatis,allelementsofDarenonnegativeandiDi=1).Thew
>
eaklearnerwedescribelaterreceivesDandSandout|36utsadecisionstumph:X—>Ythatm

inimizestheriskw.r.t.D,

m [l
LD(h)= Di1[h(x .
i)=yil OSDillxi i>01iv=1 O
i=1 min min 2 Dillxi,j>8]ity= > Dily . (10.1)
‘Note that if D *E(#J®ER ., 1/m) then LD(h) = LB(M. 1 0e].
FRQFaII that each decision stump is parameterized py an index j € [d]and a

rd kel 61sBeet HiopxamipiesizinigdiR jEx@mousbsnig Sdfimexthe problem
& {i,j+xi+1,jj2: |€[En 1?5 {(x1,j-1),(xm,j+1) NotethatforanyBER
there exists 6’

€ 0] that yields the same predictions for the sample S as the
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threshold 8. Therefore, instead of minimizing over 6
0

€0j.

This already gives us an efficient procedure: Choose |

€ R we can minimize over

€ [d]and 6 € Oj that
minimize the objective value of Equation (10.1). For every jand ©

€ 0Ojwe
have to calculate a sum over m examples; therefore the runtime of this approach
would be 0(dm2). We next show a simple trick that enables us to minimize the
objective in time O(dm).
The observation is as follows. Suppose we have calculated the objective for
0
€ (xi-1,j, xi,j). Let F (B) be the value of the objective. Then, when we consider

€ (xi,j, xi+1,j) we have that

F(6)=F(0)

-Dilly i1 —-i=1]+D[yi=-1]=F(8)yiDi.

Th?re'f‘o €, We tdll Lélbuldl%hlw%ﬁl’jﬁlé%\llsﬁlgﬁ gtdlrlncﬁls.ullbldlll LITeE, gIveTl ‘I.I e
objective at the previous threshold, 8. It follows that after a preprocessing step
in whichl welsd?tihe examples with respect to each coordinate, the minimijization

problem can befpriftirgset H#o€lrde O@mMThis yields the following pseudpcode.
distribution vector D

godlifd ? ?thatsolveEquation(10.1)
initf;:zlize:
for | d

Lq-es

§or’c usingthe "thcoordinate,anddenote
1] X X X X

£S<|?i]:ef2,js-.-Sm,jSm+1,j=)(m,j+1=i:yi=1i?

Lo171) FF O x|
ifQr..,m
EFyD
FithF x x
a[;dl(i']):?i?'?]FEx»(
’ +),f
el =]

AdaBo ost

AdaBoost (short for Adaptive Boosting) is an algorithm that has access to a weak
learner and finds a hypothesis with a low empirical risk. The AdaBoost

algorithm receives as input a training set of examples S = (x1, y1), ..., (xm, ym),
where for each i, yi = f(xi) for some labeling function f. The boosting process
proceeds in a sequence of consecutive rounds. At round t, the booster first
defines
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a

SdistributionovertheexamplesinS,denotedD(t). Thatis,D(t) €ERm+andm(t)boosterpassesthedistribution(t)i=1Di=1
according to D(t) and f.) The weak learner is assumed to return a “weak”
hypothesis, ht, whose error,

Smdefdef(t)et=LD(t)(ht)=Dil[ht(xi)=y,ili=1
isat most 1

gy (of course, there is a probability of at most & that the wea _ _

(klearn)erfails).Then,AdaBoostassignsaweightforhl1tasfollows:wt=2loge-1.tThatis,theweightofhtisinverselypro
of the round, AdaBoost updates the distribution so that examples on which ht

errs will get a higher probability mass while examples on which ht is correct will

get a lower probability mass. Intuitively, this will force the weak learner to focus

on the problematic examples in the next round. The output of the AdaBoost

algorithm is a “strong” classifier that is based on a weighted sum of all the weak

hypotheses. The pseudocode of AdaBoost is presented in the following.

AdaBoost

input:

training set S = (x1, y1), ..., (xm, ym)
weak learner WL

number of rounds T
initializeD(1)=(11 _ _
m,..., m).
fort=1,...,T:

invokeweakle D(t)

(Farnerh)t=WL(,S)m(t)computeet=i=1Dil[yi=ht(xi)]letw11t=2loge-1t(t+1)
S(t)Diexp(-wtyiht(xi))updateDi=,. m(t)j=1Djexp(-wty]
(hY forallit(xj)) )=1..,mToutputthehypothesishs(x)=sign t=1wtht(x).

The following theorem shows that the training error of the output hypothesis
decreases exponentially fast with the number of boosting rounds.
theorem10.2 LetSbeatrainingsetandassumethatateachiterationof
AdaBoost, the weak learner returns a hypothesis for which et <1/2 -v. Then,

the training error of the output hypothesis of AdaBoost is at most

LS(hs)= %ml[hs(xrmﬁil < exp(-2Y2T),

Sft=p=
Proof Foreacht, denote t wphprherefore, the output of AdaBoost
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is f1.In addition, denote

- —sme¥ ),
i
Note that for any hypothesis we have that 1| & <e—yh(x)h(x)=y].Therefore,LS(fT)<

Z, so it suffices to show Z

<e-2y2TTthatT.ToupperboundZTwerewriteit
as

TZT

-ZT=1---72-71T7==,(10.2)20ZT
-1272T-221 270

where we used the fact that Z0 = 1 because f0
Z_E-O.Zrherefore, it suffices to show——

MpY YR REVHIY Mt that using a simple inductive argument, for all
Zt+1

§¥<_ii&013) yF x
SeRiT Jth)=1e E—
J
Hence,
_ -yi ft+1 (xi)
£3mihes
—yift(xj)
rej=1me=i=¥j ft (xi ) eslyint
B-yj ft (x))
b=
-0 ot+1 t+1¥ﬁr)1 t= D(i"i)eyWh X
t+1)
|
Ye-wt+1@+1)D+ewt+1iDiryiht+1(xi)=1i:yiht+1(xi)=-1
eyhdiliate1et+1
1 v
v
(1 >(
—et+1)+1/et-1€1/¢
- +1t+1t+11 N
et+1 v
S e eter
=2 et+1(1
—gtH1). v - a) is mono-
By our assumption, € V()(

‘ . ——————— <1t+12-y Sincethefunctipng(a)=a(l-
tonically increasing in [0, 1/2], we obtain that — Y .

11
288G ay=1-4222
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VFinally,usingtheinequalityl-a<e-awehavethatl-44y2y2<e-/2=-2y2e.ThisshowsthatEquation(10.3)holdsandt

]
Each iteration of AdaBoost involves O(m) operations as well as a single call to
the weak learner. Therefore, if the weak learner can be implemented efficiently
(as happens in the case of ERM with respect to decision stumps) then the total
training process will be efficient.

Remark10.2 Theorem10.2assumesthatateachiterationofAdaBoost,the

weak learner returns a hypothesis with weighted sample error of at most 1/2 V.
According to the definition of a weak learner, it can fail with probability 8. Using
the union bound, the probability that the weak learner will not fail at all of the
iterations is at least 1
- 6T. As we show in Exercise 1, the dependence of the

sample complexity on & can always be logarithmic in 1/8, and therefore invoking
the weak learner with a very small & is not problematic. We can therefore assume
that 8T is also small. Furthermore, since the weak learner is only applied with
distributions over the training set, in many cases we can implement the weak
learner so that it will have a zero probability of failure (i.e., & = 0). This is the
case, for example, in the weak learner that finds the minimum value of LD(h)
for decision stumps, as described in the previous section.

Theorem 10.2 tells us that the empirical risk of the hypothesis constructed by
AdaBoost goes to zero as T grows. However, what we really care about is the
true risk of the output hypothesis. To argue about the true risk, we note that the
output of AdaBoost is in fact a composition of a halfspace over the predictions
of the T weak hypotheses constructed by the weak learner. In the next section
we show that if the weak hypotheses come from a base hypothesis class of low
VC-dimension, then the estimation error of AdaBoost will be small; namely, the
true risk of the output of AdaBoost would not be very far from its empirical risk.

10.3 Linear Combinations of Base Hypotheses

As mentioned previously, a popular approach for constructing a weak learner is to
apply the ERM rule with respect to a base hypothesis class (e.g., ERM over
decision stumps). We have also seen that boosting outputs a composition of a
halfspace over the predictions of the weak hypotheses. Therefore, given a base
hypothesis class B (e.g., decision stumps), the output of AdaBoost will be a
member of the

{followingc(lass:y) ITL(B,T)=x—7signwtht(x):w&ERT, Vt,ht €B.(10.4)t=1
Thatis, each h ) )
€ L(B,T) is parameterized by T base hypotheses from B and
by a vector w
€ RT. The prediction of such an h on an instance x is ob-
tained by first applying the T base hypotheses to construct the vector Y(x) =
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(hO O) E€RT1x,...,hTx,andthenapplyingthe(homogenous)halfspacedefined
by w on Y(x).
In this section we analyze the estimation error of L(B,T) by bounding the

VC-dimension of L(B,T) in terms of the VC-dimension of B and T. We will
show that, up to logarithmic factors, the VC-dimension of L(B,T) is bounded
by T times the VC-dimension of B. It follows that the estimation error of Ad-
aBoost grows linearly with T . On the other hand, the empirical risk of AdaBoost
decreases with T. In fact, as we demonstrate later, T can be used to decrease
the approximation error of L(B,T). Therefore, the parameter T of AdaBoost
enables us to control the bias-complexity tradeoff.

To demonstrate how the expressive power of L(B, T) increases with T, consider
the simple example, in which
X =R and the base class is Decision Stumps,

HDS1={x—>7sign(x-08)-b:8€eR,be{+x1}}.

Note that in this one dimensional case, o ]
HDS1 is in fact equivalent to (nonho-

mogenous) halfspaces on R.

Now, let H be the rather complex class (compared to halfspaces on the line)

of piece-wise constant functions. Let gr be a piece-wise constant function with at
most r pieces; that is, there exist thresholds —00=00<01<B2<-+-<Br=co
such that

Srgr(x)=ail[x€E(0,8]]ViEe{t}li-i,al.lii=1

Denote by Gr the class of all such piece-wise constant classifiers with at most r

pieces.

In the following we show that GT € L(HDS1, T); namely, the class of halfspaces

over T decision stumps yields all the piece-wise constant classifiers with at most
T pieces.

Indeed, without loss of generality consider any g

-tTwithat=(1).This

impliesthatifxisintheinterval(B tt
-1,6t], then g(x) = (1) . For example: ’7

N

Now, the function

(0 = sighe " signix _eeq ) (10.5)
t=(

wherewl=0.5andfort>1,w -1, is inq L( ;- T)andisequaltog

DS
(see Exercise 2).
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From this example we obtain that L( HDS1,T) can shatter any set of T + 1
instances in R; hence the VC-dimension of L(

HDS1, T) is at least T +1. Therefore,
T is a parameter that can control the bias-complexity tradeoff: Enlarging T

yields a more expressive hypothesis class but on the other hand might increase
the estimation error. In the next subsection we formally upper bound the VC-
dimension of L(B, T) for any base class B.

10.3.1  TheVC-Dimensionof L(B, T)

The following lemma tells us that the VC-dimension of L(B, T ) is upper bounded
byO~ (VCdim(B)T)(theO ~notationignoresconstantsandlogarithmicfactors).

lemmal10.3 LetBbeabaseclassandletL(B,T)beasdefinedinEqua-
tion (10.4). Assume that both T and VCdim(B) are at least 3. Then,
VCdim(L(B, T))

< T (VCdim(B) + 1) (3 log(T (VCdim(B) + 1)) + 2).

Proof Denote d = VCdim(B). Let C =

{x1,...,xm} be a set that is shat-
tered by L(B,T). Each labeling of C by h
€ L(B, T) is obtained by first choos-

ing h1,...,hT
€ B and then applying a halfspace hypothesis over the vector
(h(().BySauer d1x,...,hTx’slemma,thereareatmost(em/d)differentdi-

chotomies (i.e., labelings) induced by B over C. Therefore, we need to choose
T hypotheses, out of at most (em/d)d different hypotheses. There are at most
(em/d)dT ways to do it. Next, for each such choice, we apply a linear predictor,
which yields at most (em/T)T dichotomies. Therefore, the overall number of
dichotomies we can construct is upper bounded by

(em/d)dT (em/T)T
<m(d+1)T,

where we used the assumption that both d and T are at least 3. Since we assume
theireftsrehattered, we must have that the preceding is at least 2m, which yields
2m

<(d+1)Tmlog(m).log(2)
<m(d+1)T. "
Lemma A.1 in Chapter A tells us that a necessary condition for the above to
hold is that

<(d+1)T(d+1)Tm2log<(d+1)T(3log((d+1)T)+2),log(2)log(2)

which concludes our proof.

In Exercise 4 we show that for some base classes, B, it also holds that VCdim@
Q(VCdim(B) T). LB, T )) >
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Figure 10.1 The four types of functions, g, used by the base hypotheses for face
recognition. The value of g for type A or B is the difference between the sum of the
pixels within two rectangular regions. These regions have the same size and shape and
are horizontally or vertically adjacent. For type C, the value of g is the sum within

two outside rectangles subtracted from the sum in a center rectangle. For type D, we
compute the difference between diagonal pairs of rectangles.

AdaBoost for Face Recognition

We now turn to a base hypothesis that has been proposed by Viola and Jones for
the task of face recognition. In this task, the instance space is images,
represented as matrices of gray level values of pixels. To be concrete, let us take

images of size 24 ) )
x 24 pixels, and therefore our instance space is the set of real valued

matrices of size 24
x 24. The goal is to learn a classifier, h : X = {+1}, that
given an image as input, should output whether the image is of a human face or
not.
Each hypothesis in the base class is of the form h(x) = f(g(x)), where fis a

decision stump hypothesis and g: R24,24  _, pic 2 function that maps an image

to a scalar. Each function g is parameterized by

= An axis aligned rectangle R. Since each image is of size 24 x 24, there are at
most 244 axis aligned rectangles.

- Atype, t € {A,B,C,D}. Each type corresponds to a mask, as depicted in
Figure 10.1.

To calculate g we stretch the mask t to fit the rectangle R and then calculate

the sum of the pixels (that is, sum of their gray level values) that lie within the
red rectangles and subtract it from the sum of pixels in the blue rectangles.

Since the number of such functions g is at most 244 . 4, we can implement a

weak learner for the base hypothesis class by first calculating all the possible
outputs of g on each image, and then apply the weak learner of decision stumps
described in the previous subsection. It is possible to perform the first step very
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Figure 10.2 The first and second features selected by AdaBoost, as implemented by
Viola and Jones. The two features are shown in the top row and then overlaid on a
typical training face in the bottom row. The first feature measures the difference in
intensity between the region of the eyes and a region across the upper cheeks. The
feature capitalizes on the observation that the eye region is often darker than the
cheeks. The second feature compares the intensities in the eye regions to the intensity
across the bridge of the nose.

efficiently by a preprocessing step in which we calculate the integral image of
each image in the training set. See Exercise 5 for details.

In Figure 10.2 we depict the first two features selected by AdaBoost when
running it with the base features proposed by Viola and Jones.

Summary

Boosting is a method for amplifying the accuracy of weak learners. In this chapter
we described the AdaBoost algorithm. We have shown that after T iterations of
AdaBoost, it returns a hypothesis from the class L(B, T), obtained by composing a
linear classifier on T hypotheses from a base class B. We have demonstrated how
the parameter T controls the tradeoff between approximation and estimation
errors. In the next chapter we will study how to tune parameters such as T,
based on the data.

Bibliographic Remarks

As mentioned before, boosting stemmed from the theoretical question of
whether an efficient weak learner can be “boosted” into an efficient strong
learner (Kearns & Valiant 1988) and solved by Schapire (1990). The AdaBoost
algorithm has been proposed in Freund & Schapire (1995).
Boosting can be viewed from many perspectives. In the purely theoretical
context, AdaBoost can be interpreted as a negative result: If strong learning of a
hypothesis class is computationally hard, so is weak learning of this class. This
negative result can be useful for showing hardness of agnostic PAC learning of

a class B based on hardness of PAC learning of some other class
H, as long as
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H is weakly learnable using B. For example, Klivans & Sherstov (2006) have
shown that PAC learning of the class of intersection of halfspaces is hard (even in
the realizable case). This hardness result can be used to show that agnostic PAC
learning of a single halfspace is also computationally hard (Shalev-Shwartz,
Shamir & Sridharan 2010). The idea is to show that an agnostic PAC learner for a
single halfspace can yield a weak learner for the class of intersection of
halfspaces, and since such a weak learner can be boosted, we will obtain a strong
learner for the class of intersection of halfspaces.

AdaBoost also shows an equivalence between the existence of a weak learner

and separability of the data using a linear classifier over the predictions of base

hypotheses. This result is closely related to von Neumann’s minimax theorem
(von Neumann 1928), a fundamental result in game theory.

AdaBoost is also related to the concept of margin, which we will study later on
in Chapter 15. It can also be viewed as a forward greedy selection algorithm, a
topic that will be presented in Chapter 25. A recent book by Schapire & Freund
(2012) covers bhoosting from all points of view, and gives easy access to the
wealth of research that this field has produced.

Exercises

1. Boosting the Confidence: Let A be an algorithm that guarantees the fol-

lowing: There exist some constant 60
€ (0, 1) and a functionmH: (0, 1) = N
such that for every €
€ (0,1), if m > mH(¢) then for every distribution D it
holds that with probability of at least 1
- 80, LD(A(S)) < minh&€H LD(h) + €.
Suggest a procedure that relies on A and learns K
Hin the usual agnostic
PAC learning model and has a sample com
where

g%ige%t)y%'gg{%@mH(s,8)ska(s)+ ,2
Hint: Divide the data into k + 1 chunks, where each of the first k chunks

is of size m H(g) examples. Train the first k chunks using A. Argue that the

probability that for all of these chunks we have L
D(A(S)) > minh&€H LD(h)+¢
is at most &k0
< 8/2. Finally, use the last chunk to choose from the k hypotheses
that A generated from the k chunks (by relying on Corollary 4.6).
2. Prove that the function h given in Equation (10.5) equals the piece-wise con-
stant function defined according to the same thresholds as h.
3. We have informally argued that the AdaBoost algorithm uses the weighting
mechanism to “force” the weak learner to focus on the problematic examples
in the next iteration. In this question we will find some rigorous justification
for this argument.
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Show that the error of bt w.r.t. the distribution D®*1) s exactly 1/2. That

is, show that for every t Il
e T

Sm(t+1)Dilly /.i6=ht(xi)]=12i=1

4. 1In this exercise we discuss the VC-dimension of classes of the form L(B,T).
We proved an upper bound of O(dT log(dT)), where d = VCdim(B). Here we
wish to prove an almost matching lower bound. However, that will not be the
case for all classes B.

1. Note that for every class B and every number T

> 1, VCdim(B) <

VCdim(L(B, T)). Find a class B for which VCdim(B) = VCdim(L(B, T))
Eolr.every T

Hint: Take

X to be a finite set.

2.LetBbetheclassofdec Rdd isionstumpsover.Provethatlog(d)

<

VCdim(Bd)

<5+ 2 log(d).

Hints:

- Fortheupperbound,relyonExercise1l.

« For the lower bound, assume d = 2k. Let A be a k x d matrix whose

EPLYR A5 RS 1O ABIR Y vectors in

a set of k vectors in Rd. Show that this set is shattered by decision
stumps over Rd.

3. LetT

> 1 be any integer. Prove that VCdim(L(Bd, T)) > 0.5 T log(d).
Hint: Construct a set of T

2 k instances by taking the rows of the matrix A )
from the previous question, and the rows of the matrices 2A, 3A,4A, ..., T A

Show that the resulting set is shattered by L(Bd, T).
5. Efficiently Calculating the Viola and Jones Features Using an Inte-

gral Image: Let A be a 24
x 24 matrix representing an imag

ye.TheintegralimageofA,denotedbyI(A),isthematrixBsuchthatBi,j=i’<i,j’<jAi,j.«ShowthatI(A)canbecalculatedfrom,

- ShowhoweveryViolaandJonesfeaturecanbecalculatedfromI(A)ina
constant amount of time (that is, the runtime does not depend on the
size of the rectangle defining the feature).
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Model Selection and Validation

In the previous chapter we have described the AdaBoost algorithm and have
shown how the parameter T of AdaBoost controls the bias-complexity trade- off.
But, how do we set T in practice? More generally, when approaching some
practical problem, we usually can think of several algorithms that may yield a
good solution, each of which might have several parameters. How can we choose
the best algorithm for the particular problem at hand? And how do we set the
algorithm’s parameters? This task is often called model selection.

To illustrate the model selection task, consider the problem of learning a one

dimensional regression function, h : R ) .
- R. Suppose that we obtain a training

set as depicted in the figure.

We can consider fitting a polynomial to the data, as described in Chapter 9.
However, we might be uncertain regarding which degree d would give the best
results for our data set: A small degree may not fit the data well (i.e., it will have a
large approximation error), whereas a high degree may lead to overfitting (i.e., it
will have a large estimation error). In the following we depict the result of fitting a
polynomial of degrees 2, 3, and 10. It is easy to see that the empirical risk
decreases as we enlarge the degree. However, looking at the graphs, our intuition
tells us that setting the degree to 3 may be better than setting it to 10. It follows
that the empirical risk alone is not enough for model selection.

degree 2 degree 3 degree 10
JAN
s * . ‘/o /i——l\\.\ \l_/*\ Ly /|
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In this chapter we will present two approaches for model selection. The first
approach is based on the Structural Risk Minimization (SRM) paradigm we
have described and analyzed in Chapter 7.2. SRM is particularly useful when
a learning algorithm depends on a parameter that controls the bias-complexity
tradeoff (such as the degree of the fitted polynomial in the preceding example
or the parameter T in AdaBoost). The second approach relies on the concept
of validation. The basic idea is to partition the training set into two sets. One
is used for training each of the candidate models, and the second is used for

deciding which of them yields the best results.
In model selection tasks, we try to find the right balance between approxi-
mation and estimation errors. More generally, if our learning algorithm fails to
find a predictor with a small risk, it is important to understand whether we
suffer from overfitting or underfitting. In Section 11.3 we discuss how this can

be achieved.

Model Selection Using SRM

The SRM paradigm has been described and analyzed in Section 7.2. Here we
show how SRM can be used for tuning the tradeoff between bias and complexity
without deciding on a specific hypothesis class in advance. Consider a countable

sequence of hypothesis classes ]
H1, H2, H3, . ... For example, in the problem of

polynomial regression mentioned, we can take

Hd to be the set of polynomials
of degree at most d. Another example is taking

Hd to be the class L(B, d) used
by AdaBoost, as described in the previous chapter.

We assume that for every d, the class . .
Hd enjoys the uniform convergence

property (see Definition 4.3 in Chapter 4) with a sample complexity function of
the form

g(d) log(1/8)
M¥%)<, q1nde2
where g: N
- R is some monotonically increasing function. For example, in the
case of binary classification problems, we can take g(d) to be the VC-dimension

of the class Hd multiplied by a universal constant (the one appearing in the
fundamental theorem of learning; see Theorem 6.8). For the classes L(B, d) used
by AdaBoost, the function g will simply grow with d.

Recall that the SRM rule follows a “bound minimization” approach, where in
our case the bound is as follows: With probability of at least 1

d
ENandhEHg,

Vg(d)(log(1/6)+2log(d)+log(m2/6))LD(h)<LS(h)+.(11.2)m

This bound, which follows directly from Theorem 7.4, shows that for every d and
everyh d,thetrueriskisboundedbytwoterms-theempiricalrisk,LS(h),

- 8, for every
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and a complexity term that depends on d. The SRM rule will search for d and

h
€ Hd that minimize the right-hand side of Equation (11.2).

Getting back to the example of polynomial regression described earlier, even
though the empirical risk of the 10th degree polynomial is smaller than that of
the 3rd degree polynomial, we would still prefer the 3rd degree polynomial since
its complexity (as reflected by the value of the function g(d)) is much smaller.

While the SRM approach can be useful in some situations, in many practical
cases the upper bound given in Equation (11.2) is pessimistic. In the next section
we present a more practical approach.

11.2 Validation

We would often like to get a better estimation of the true risk of the output pre-
dictor of a learning algorithm. So far we have derived bounds on the estimation
error of a hypothesis class, which tell us that for all hypotheses in the class, the
true risk is not very far from the empirical risk. However, these bounds might be
loose and pessimistic, as they hold for all hypotheses and all possible data dis-
tributions. A more accurate estimation of the true risk can be obtained by using
some of the training data as a validation set, over which one can evalutate the
success of the algorithm’s output predictor. This procedure is called validation.
Naturally, a better estimation of the true risk is useful for model selection, as

we will describe in Section 11.2.2.

11.2.1 Hold Out Set

The simplest way to estimate the true error of a predictor h is by sampling an ad-
ditional set of examples, independent of the training set, and using the empirical

error on this validation set as our estimator. Formally, let V = (x1, y1), ..., (xm ,ym)

be a set of fresh mv examples that are sampled according to
D (independently of

the m examples of the training set S). Using Hoeffding’s inequality (Lemma 4.5)

we have the followmg;n Let besomepredictorandassumethatthelossfunctionisin

theorem 111 & .Then,forevery ,withprobabilityofatleast overthechoice

@q&lj@a_tg)nset ofsize wehave
\/Iog(2/6)v0—D(h)|sl.2va -

The bound in Theorem 11.1 does not depend on the algorithm or the training
set used to construct h and is tighter than the usual bounds that we have seen so
far. The reason for the tightness of this bound is that it is in terms of an estimate
on a fresh validation set that is independent of the way h was generated. To
illustrate this point, suppose that h was obtained by applying an ERM predictor
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with respect to a hypothesis class of VC-dimension d, over a training set of m
examples. Then, from the fundamental theorem of learning (Theorem 6.8) we
obtain the bound

Vd+log(1/)LD(h)<&LS(h)+C,m

where C is the constant appearing in Theorem 6.8. In contrast, from Theo-
rem 11.1 we obtain the bound

Vlog(26)LD(h)</LV(h)+.2mv

Therefore, taking mv to be order of m, we obtain an estimate that is more
accurate by a factor that depends on the VC-dimension. On the other hand, the
price we pay for using such an estimate is that it requires an additional sample
on top of the sample used for training the learner.

Sampling a training set and then sampling an independent validation set is
equivalent to randomly partitioning our random set of examples into two parts,
using one part for training and the other one for validation. For this reason, the
validation set is often referred to as a hold out set.

Validation for Model Selection

Validation can be naturally used for model selection as follows. We first train
different algorithms (or the same algorithm with different parameters) on the
given training set. Let

H={h1, ..., hr} be the set of all output predictors of the
different algorithms. For example, in the case of training polynomial regressors,
we would have each hr be the output of polynomial regression of degree r. Now,

to choose a single predictor from o
H we sample a fresh validation set and choose

the predictor that minimizes the error over the validation set. In other words,

WeeePthEBMidation set.
This process is very similar to learning a finite hypothesis class. The only

difference is that H is not fixed ahead of time but rather depends on the train-

ing set. However, since the validation set is independent of the training set we

getthat it is also independentof |y o4 therefore the same technique we used

to derive bounds for finite hypothesis classes holds here as well. In particular,
ESFnbining Theorem 11.1 with the union bound wehehkiflsitrarysetofpredictorsand
bbseorethatth@ossfunctionisin .Assumethatavalidationset ofsize

9 santpied ingeppndent of H.Then,withprobabilityofatleast overthe
ERckéb wehave

r_nv1

-\/—

2mv
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This theorem tells us that the error on the validation set approximates the

true error as long as ) ]
H is not too large. However, if we try too many methods

(resulting in
[H| that is large relative to the size of the validation set) then we’re
in danger of overfitting.

To illustrate how validation is useful for model selection, consider again the

example of fitting a one dimensional polynomial as described in the beginning

of this chapter. In the following we depict the same training set, with ERM

polynomials of degree 2, 3, and 10, but this time we also depict an additional

validation set (marked as red, unfilled circles). The polynomial of degree 10 has

minimal training error, yet the polynomial of degree 3 has the minimal validation
error, and hence it will be chosen as the best model.

The Model-Selection Curve

The model selection curve shows the training error and validation error as a func-
tion of the complexity of the model considered. For example, for the polynomial
fitting problem mentioned previously, the curve will look like:
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As can be shown, the training error is monotonically decreasing as we increase
the polynomial degree (which is the complexity of the model in our case). On the
other hand, the validation error first decreases but then starts to increase, which
indicates that we are starting to suffer from overfitting.

Plotting such curves can help us understand whether we are searching the
correct regime of our parameter space. Often, there may be more than a single
parameter to tune, and the possible number of values each parameter can take

might be quite large. For example, in Chapter 13 we describe the concept of
regularization, in which the parameter of the learning algorithm is a real number.
In such cases, we start with a rough grid of values for the parameter(s) and plot
the corresponding model-selection curve. On the basis of the curve we will zoom
in to the correct regime and employ a finer grid to search over. It is important to
verify that we are in the relevant regime. For example, in the polynomial fitting

problem described, if we start searching degrees from the set of values
{1, 10, 20}

and do not employ a finer grid based on the resulting curve, we will end up with
a rather poor model.

k -Fold Cross Validation

The validation procedure described so far assumes that data is plentiful and that
we have the ability to sample a fresh validation set. But in some applications,
data is scarce and we do not want to “waste” data on validation. The k-fold cross
validation technique is designed to give an accurate estimate of the true error
without wasting too much data.

In k-fold cross validation the original training set is partitioned into k subsets
(folds) of size m/k (for simplicity, assume that m/k is an integer). For each fold,
the algorithm is trained on the union of the other folds and then the error of its
output is estimated using the fold. Finally, the average of all these errors is the
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estimate of the true error. The special case k = m, where m is the number of

examples, is called leave-one-out (LOO).
k-Fold cross validation is often used for model selection (or parameter tuning),
and once the best parameter is chosen, the algorithm is retrained using this
parameter on the entire training set. A pseudocode of k-fold cross validation for
model selection is given in the following. The procedure receives as input a
training set, S, a set of possible parameter values, ©, an integer, k, representing
the number of folds, and a learning algorithm, A, which receives as input a

training set as well as a parameter 6
€ 0. It outputs the best parameter as well

as the hypothesis trained by this parameter on the entire training set.

k-Fold Cross Validation for Model Selection

input:

training|set S = (x1, y1), ..., (xm, ym)
set of parameter values ©
learning|algorithm A

integer |
partitign Sinto S1,S2, ..., Sk
@r%?c no
fori=1..,k
hi,0 = A(

SS\Si;0)error(B0)=1kki=1LS(hii,8)output

B? = argmin® [error(0)]
h ?67=A(S;8)

The cross validation method often works very well in practice. However, it
might sometime fail, as the artificial example given in Exercise 1 shows. Rig-
orously understanding the exact behavior of cross validation is still an open
problem. Rogers and Wagner (Rogers & Wagner 1978) have shown that for k
local rules (e.g., k Nearest Neighbor; see Chapter 19) the cross validation proce-
dure gives a very good estimate of the true error. Other papers show that cross
validation works for stable algorithms (we will study stability and its relation to
learnability in Chapter 13).

Train-Validation-TestSplit

In most practical applications, we split the available examples into three sets.
The first set is used for training our algorithm and the second is used as a
validation set for model selection. After we select the best model, we test the
performance of the output predictor on the third set, which is often called the
“test set.” The number obtained is used as an estimator of the true error of the
learned predictor.
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What to Do If Learning Fails

Consider the following scenario: You were given a learning task and have ap-
proached it with a choice of a hypothesis class, a learning algorithm, and param-
eters. You used a validation set to tune the parameters and tested the learned
predictor on a test set. The test results, unfortunately, turn out to be unsatis-
factory. What went wrong then, and what should you do next?

There are many elements that can be “fixed.” The main approaches are listed
in the following:

- Getalargersample
« Change the hypothesis class by:
- Enlarging it
- Reducing it
- Completely changing it
- Changing the parameters you consider
- Change the feature representation of the data
« Change the optimization algorithm used to apply your learning rule
In order to find the best remedy, it is essential first to understand the cause

of the bad performance. Recall that in Chapter 5 we decomposed the true er-
ror of the learned predictor into approximation error and estimation error. The

approximationerrorisdefinedtobel? ? D(h) for some h € argminh €HLD(h),
whiletheestimationerrorisdefinedtobel ?
D(hS) = LD(h ), where hS is the
learned predictor (which is based on the training set S).
The approximation error of the class does not depend on the sample size or
on the algorithm being used. It only depends on the distribution
D and on the
hypothesis class
H. Therefore, if the approximation error is large, it will not help
us to enlarge the training set size, and it also does not make sense to reduce the
hypothesis class. What can be beneficial in this case is to enlarge the hypothesis
class or completely change it (if we have some alternative prior knowledge in
the form of a different hypothesis class). We can also consider applying the
same hypothesis class but on a different feature representation of the data (see
Chapter 25).
The estimation error of the class does depend on the sample size. Therefore, if
we have a large estimation error we can make an effort to obtain more training
examples. We can also consider reducing the hypothesis class. However, it

E?F 6ecom£>05[t|0n uhSI
W e sens nlarge e5|s class that case
e see that unders mg er our pro NenfisCaue to approximation error or

estimation error is very useful for finding the best remedy. In the previous section

we saw how to estimate L ] o ) o
D(hS) using the empirical risk on a validation
set. However, it is more difficult to estimate the approximation error of the class.
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Instead, we give a different error decomposition, one that can be estimated from
the train and validation sets.

L
D(hS) = (LD(hS) - LV (hS)) + (LV (hS) - LS(hS)) + LS(hS).
The first term, (L
D(hS) - LV (hS)), can be bounded quite tightly using Theo-
rem 11.1. Intuitively, when the second term, (LV (hS)

- LS(hS)), is large we say
that our algorithm suffers from “overfitting” while when the empirical risk term,
LS(hS), is large we say that our algorithm suffers from “underfitting.” Note that
these two terms are not necessarily good estimates of the estimation and ap-

proximation errors. To illustrate this, consider the case in which ]
His a class of

VC-dimension d, and
D is a distribution such that the approximation error of H
with respect to
Dis 1/4. As long as the size of our training set is smaller than
d we will have LS(hS) = 0 for every ERM hypothesis. Therefore, the training

risk,L(htheapproximatione?SS),andrror,L D(h), can be significantly different.

Nevertheless, as we show later, the values of LS(hS) and (LV (hS)
- LS (hS)) still
provide us useful information.

Consider first the case in which LS(hS) is large. We can write

L(h)=(0
—(?)?-2?SSLShSLSh)+(LS(h)LD(h))+LD(h).
Whenh isanERM hypothesisweh
-?SHavethatLS(hS)LS(h)<0.Inaddition,
since h? does not depend on S, the term (L ?

- ?S(h)LD(h))canbeboundedquite
tightly (as in Theorem 11.1). The last term is the approximation error. It follows

that if LS(hS) is large then so is the approximation error, and the remedy to the
failure of our algorithm should be tailored accordingly (as discussed previously).

Remark 11.1 It is possible that the approximation error of our class is small,

yet the value of LS(hS) is large. For example, maybe we had a bug in our ERM
implementation, and the algorithm returns a hypothesis hS that is not an ERM.

It may also be the case that finding an ERM hypothesis is computationally hard,
and our algorithm applies some heuristic trying to find an approximate ERM. In
some cases, it is hard to know how good hS is relative to an ERM hypothesis. But,
sometimes it is possible at least to know whether there are better hypotheses.
For example, in the next chapter we will study convex learning problems in
which there are optimality conditions that can be checked to verify whether

our optimization algorithm converged to an ERM solution. In other cases, the
solution may depend on randomness in initializing the algorithm, so we can try
different randomly selected initial points to see whether better solutions pop out.

Next consider the case in which LS(hS) is small. As we argued before, this
g8ﬁ§188F necessarily imply that the approximation error is small. Indeed,

two scenarios, in both of which we are trying to learn a hypothesis class of
VC-dimension d using the ERM learning rule. In the first scenario, we have a
training set of m < d examples and the approximation error of the class is high.
In the second scenario, we have a training set of m > 2d examples and the
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Figure 11.1 Examples of learning curves. Left: This learning curve corresponds to the
scenario in which the number of examples is always smaller than the VC dimension of
the class. Right: This learning curve corresponds to the scenario in which the
approximation error is zero and the number of examples is larger than the VC
dimension of the class.

approximation error of the class is zero. In both cases LS(hS) = 0. How can we
distinguish between the two cases?

Learning Curves
One possible way to distinguish between the two cases is by plotting learning
curves. To produce a learning curve we train the algorithm on prefixes of the data
of increasing sizes. For example, we can first train the algorithm on the first 10%
of the examples, then on 20% of them, and so on. For each prefix we calculate
the training error (on the prefix the algorithm is being trained on) and the
validation error (on a predefined validation set). Such learning curves can help us
distinguish between the two aforementioned scenarios. In the first scenario we
expect the validation error to be approximately 1/2 for all prefixes, as we didn’t
really learn anything. In the second scenario the validation error will start as a
constant but then should start decreasing (it must start decreasing once the
training set size is larger than the VC-dimension). An illustration of the two cases
is given in Figure 11.1.
In general, as long as the approximation error is greater than zero we expect the
training error to grow with the sample size, as a larger amount of data points
makes it harder to provide an explanation for all of them. On the other hand, the
validation error tends to decrease with the increase in sample size. If the VC-
dimension is finite, when the sample size goes to infinity, the validation and train
errors converge to the approximation error. Therefore, by extrapolating the
training and validation curves we can try to guess the value of the approx-
imation error, or at least to get a rough estimate on an interval in which the
approximation error resides.
Getting back to the problem of finding the best remedy for the failure of
our algorithm, if we observe that LS(hS) is small while the validation error is
large, then in any case we know that the size of our training set is not sufficient

for learning the class
H. We can then plot a learning curve. If we see that the
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validation error is starting to decrease then the best solution is to increase the
number of examples (if we can afford to enlarge the data). Another reasonable
solution is to decrease the complexity of the hypothesis class. On the other hand,
if we see that the validation error is kept around 1/2 then we have no evidence

that the approximation error of ) ) )
His good. It may be the case that increasing

the training set size will not help us at all. Obtaining more data can still help
us, as at some point we can see whether the validation error starts to decrease
or whether the training error starts to increase. But, if more data is expensive,
it may be better first to try to reduce the complexity of the hypothesis class.
To summarize the discussion, the following steps should be applied:

1. If learning involves parameter tuning, plot the model-selection curve to make

sure that you tuned the parameters appropriately (see Section 11.2.3).

2. Ifthetrainingerrorisexcessivelylargeconsiderenlargingthehypothesisclass,

completely change it, or change the feature representation of the data.

3. If the training error is small, plot learning curves and try to deduce from them

whether the problem is estimation error or approximation error.

4. If the approximation error seems to be small enough, try to obtain more data.
If this is not possible, consider reducing the complexity of the hypothesis class.

5. If the approximation error seems to be large as well, try to change the hy-

pothesis class or the feature representation of the data completely.

Summary

Model selection is the task of selecting an appropriate model for the learning task
based on the data itself. We have shown how this can be done using the SRM
learning paradigm or using the more practical approach of validation. If our
learning algorithm fails, a decomposition of the algorithm’s error should be
performed using learning curves, so as to find the best remedy.

Exercises

1. Failure of k-fold cross validation Consider a case in that the label is
chosen at random according to P[y = 1] = P[y = 0] = 1/2. Consider a
learning algorithm that outputs the constant predictor h(x) = 1 if the parity
of the labels on the training set is 1 and otherwise the algorithm outputs the
constant predictor h(x) = 0. Prove that the difference between the leave-one-
out estimate and the true error in such a case is always 1/2.

2. Let
H1, ..., Hk be k hypothesis classes. Suppose you are given m i.i.d. training
examples and you would like to learn the class
H = Uki=1Hi. Consider two
alternative approaches:

« Learn H on the m examples using the ERM rule
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- Dividethemexamplesintoatrainingsetofsize(1-a)mandavalidation

set of size am, for some a
€ (0, 1). Then, apply the approach of model

selection using validation. That is, first train each class
Hion the (1 -
a)m training examples using the ERM rule with respect to
Hi, and let
h~1,...,h"kbetheresultinghypotheses.Second,applytheERMrulewith

respect to the finite class {h~1,...h"klontheamvalidationexamples.
Describe scenarios in which the first method is better than the second and
vice versa.
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Convex Learning Problems

In this chapter we introduce convex learning problems. Convex learning
comprises an important family of learning problems, mainly because most of
what we can learn efficiently falls into it. We have already encountered linear
regression with the squared loss and logistic regression, which are convex
problems, and indeed they can be learned efficiently. We have also seen
nonconvex problems, such as halfspaces with the 0-1 loss, which is known to be
computationally hard to learn in the unrealizable case.
In general, a convex learning problem is a problem whose hypothesis class is a
convex set, and whose loss function is a convex function for each example. We
be- gin the chapter with some required definitions of convexity. Besides
convexity, we will define Lipschitzness and smoothness, which are additional
properties of the loss function that facilitate successful learning. We next turn to
defining convex learning problems and demonstrate the necessity for further
constraints such as Boundedness and Lipschitzness or Smoothness. We define
these more restricted families of learning problems and claim that Convex-
Smooth/Lipschitz-Bounded problems are learnable. These claims will be proven
in the next two chapters, in which we will present two learning paradigms that
successfully learn all problems
that are either convex-Lipschitz-bounded or convex-smooth-bounded.
Finally, in Section 12.3, we show how one can handle some nonconvex problems
by minimizing “surrogate” loss functions that are convex (instead of the original
nonconvex loss function). Surrogate convex loss functions give rise to efficient
solutions but might increase the risk of the learned predictor.

Convexity, Lipschitzness, and Smoothness

Convexity

definition 12.1 (Convex Set) A set C in a vector space is convex if for any two
vectors u, vin C, the line segment between u and v is contained in C. That is, for
any a
€ [0, 1] we have thatau + (1 - a)v € C.

Examples of convex and nonconvex sets in R2 are given in the following. For

the nonconvex sets, we depict two points in the set such that the line between
the two points is not contained in the set.

Understanding Machine Learning, ©c2014byShaiShalev-ShwartzandShaiBen-David
Published 2014 by Cambridge University Press.
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non-convex convex

Given a € [0, 1], the combination, au + (1 - a)v of the points u, v is called a

convex combination.
definition 12.2 (Convex Function) Let C be a convex set. A function f :
C Ris convexif for everyu,v € Cand a € [0, 1],

f(au + (1
-a)v) < af(u)+@Q-a)f(v) .

In words, fis convex if for any u, v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). Anillustration of a convex function,
f:R
- R, is depigted in the following.

af(uy+@ - a)ty)

flau +1 - a)v)

au+(l - a)v

The epigraph of a function f is the set

epigraph(f) =
{(x,B):f(x)<B}. (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a

convex set. An illustration of a nonconvex function f: R > R, along with its

epigraph, is given in the following.
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f(x)

N

An important property of convex functions is that every local minimum of the

function is also a global minimum. Formally, let B(u, r) =
{vi]jv-u]lsribe

a ball of radius r centered around u. We say that f(u) is a local minimum of f
at u if there exists some r > 0 such that for all v € B(u, r) we have f(v) > f(u).

It follows that for any v (not necessarily in B), there is a small enough a > 0

suphdh &t HANd therefore
f(u < flu+ralv - u) . (12.2)

If f is convex, we also have that
flu+alv —uw)=(fav +(1 - qu) < 1 - a)f(u)+ af(v) . (12.3)

Combining these two equations and rearranging terms, we conclude that f(u)

f(v). Since this holds for every v, it follows that f(u) is also a global minimum
off.
Another important property of convex functions is that for every w we can

construct a tangent to f at w that lies below f everywhere. If f is differentiable,
t

(histangentisthelinearfunction()=()+(),where()isthegradi)lufw {Vfw,u-w) Vfwentoffatw,namely,th

W, FU) s Fw)+ (fgw),u — wy, (12.4)

In Chapter 14 we will generalize this inequality to nondifferentiable functions. An
illustration of Equation (12.4) is given in the following.
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If fis a scalar differentiable function, there is an easy way to check if it is
CONVEX.

lemmal2.3 f:R Let beascalartwicedifferentialfunction,andlet
f",f’Rbe its first and second derivatives, respectively. Then, the following are
equivalent:

1. fis convex
2. f"is monotonically nondecreasing
3.f”is nonnegative

Example 12.1

« The scalar function f(x) = x2 is convex. To see this, note that f’(x) = 2x
and f”(x) =2 > 0.

« Thescalarfunctionf(x)=log(1+exp(x))isconvex.Toseethis,observethat
LmeReo =2

1+exp

) ~_ =x)+1.This is a monotonically increasing function
since the exponent function is a monotonically increasing function.

The following claim shows that the composition of a convex scalar function
with a linear function yields a convex vector-valued function.
claim12.4 f:Rdpaghawritgnasf(w)=g( R
for some ,and R (w, x> +Yy),
gonvexity of f.

REPRlKdLA=[0,1] Wehave

€Rd,yER g: R.Then,convexityofgimpliesthe

flawl + (1 W X
—a)w2) =g( {awl+(1-0)2,) +vy) WX
el WX y+y)
wix) +(1-0) (2,5 42"
= g(a WX
wi, x» +y)+@Q-a) <2, ]

<ag( <wl, x> +y)+ (1 -ag( (2,
Example 12.2
where the last inequality follows from the convexity of g.
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« Given some x € Rdandy € R, let f : Rd - R be defined as f(w) =

( {w,x) -y)2.Then, fis a composition of the function g(a) = a2 onto a
linear function, and hence f is a convex function.
« Given some x € Rd and y € {+1}, let f : Rd = R be defined as f(w) =
log(1 + exp(

-y {w,x> )). Then, fis a composition of the function g(a) =
log(1 + exp(a)) onto a linear function, and hence f is a convex function.

Finally, the following lemma shows that the maximum of convex functions is
convex and that a weighted sum of convex functions, with nonnegative weights,
Foalso convex. et

E?lalf)r\{]vqwg%l?g%?n?rf@g}RR to R are also convex.

= Rgleaeonvexfunction.Thed
. X
axi€e[rlfix)rQ=i=1wifi(x),whereforalli,wi>0.Thefirstclaimfollowsby

1
g(cf;s):rgwaxfi(au+(1—a)v)i

<max[afi(u)+@-a)fi(v)]i
<amaxfi(u)+(1-a)maxfi(v)ii

= 1
- &t

For the second claim

glau+ (1 - o)y = wififgy + (1
y<wi [afi(u) + (1
-a)
2:
_ i) liawifi(u)+(1-a)wifi(v)ii

- aglpfl

Example 12.3The function g(x) =

|

|| is convex. To see this, note that g(x) =
Max{% x } and that both the function f1(x) = x and f2(x) =

=X are convex.
Lipschitzness

The definition of Lipschitzness below is with respect to the Euclidean norm over
Rd. However, it is possible to define Lipschitzness with respect to any norm.
definition 12.6 (Lipschitzness) Let C

C Rd. A function f: Rd = Rk is
p-Lipschitz over C if for every wl,w?2
€ C we have that ||f(wl) - f(w2)]| <

p
[wl - w2].
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Intuitively, a Lipschitz function cannot change too fast. Note that if f: R > R

is differentiable, then by the mean value theorem we have

f(w)fwf'1

- (2)= (W)(wl-w2),

where u is some point between w1l and w2. It follows that if the derivative of f
[s@kspyaviierg bounded (in absolute value) by p, then the function is p-Lipschitz.

« The function f(x) = |x| is 1-Lipschitz over R. This follows from the triangle
inequality: For every x1, x2,

|[x1|] - |x2| = |x1 - x2 + x2| - |x2| < |x1 - x2| + |x2| - |x2]

Since this holds for both x1,x2 and x2,x1, we obtain that

[Ix1] - [x2]] <
[x1 - x2].
« Thefunctionf(x)=log(1+

| exp(x))isl-LipschitzoverR.Toseethis,observethat|” T

L TexpX) 12fG)=1 1 1 1 1 1 1 1=11<L1l+exp(x)exp(-x)+1
« The function f(x) = x2 is not p-Lipschitz over R for any p. To see this, take
x1=0andx2=1+p,then
f(x)
-f(x)=(1+p)221>p(1+p)=plx2-x1].
However, this function is p-Lipschitz over the set C =

{x : |Ix| < p/2}.

Indeed, for any x1, x2
€ C we have
[x2-x212]=[x1+x2||x1-%x2[|<2(p/2)Ix1-x2|=p|x1-x2].
« The linear function f : Rd - R defined by f(w) = <v,w) +b wherev € Rd

is
||v]|-Lipschitz. Indeed, using Cauchy-Schwartz inequality,

[f(w1l) - f(w2)| = | v, wl = w2) | < [J[v] w1l - w2].

The following claim shows that composition of Lipschitz functions preserves
Lipschitzness.

claim 12.7 Let f(x) = g1(g2(x)), where g1 is p1-Lipschitz adld g is p2-
Piasfhitz. Then, fis (p1p2)-Lipschitz. In particular, if g2 is the linear function,

X) =
800 v, 3P (Wi Yorsbine )5 R@@E(W,fﬁénfﬁm%(-\w@))ﬁchitz.
<pg Wwh) 2g(w2)
PP W1 I
2 -2 ]
1

2
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Smo othness

The definition of a smooth function relies on the notion of gradient. Recall that
theéradient of a differentiable function f : Rd
- a

(tw,denoted Vf()w),isthevectorofpartialderivativesoff,namely, V f(w)=0f(w)of(w)o

w,...,10w.d
definition 12.8 (Smoothness) A differentiable function f : Rd
—Risf3-
smooth if its gradient is B-Lipschitz; namely, for all v,w we have
| v (v) -

VE(w)l < Bllv = w]. -

It is possible to show that smoothness implies that for all v,w we have

E%m (THwW)v-w) +[|v-w||2. (12.5)2
Recall that convexity of f implies that f(v)
> f(w)+ {Vf(w), v-w) . Therefore,

when a function is both convex and smooth, we have both upper and lower
bounds on the difference between the function and its first order approximation.
Settingv=w

- 1B Vf(w) in the right-hand side of Equation (12.5) and rear-
ranging terms, we obtain
1
117 w) | 2<F(w)~f(v). 2B

Ews E)w:tf@_rg,assu me that f(v)
> 0 for all v we conclude that smoothness implies
the folloWhegtunction f(x) = x2 is 2-smooth. This follows directly from the fact that
/(x) = 2x. Note that for this particular fu Q}l Eéti (,q, AR
Equatlon (12.6) hold with equality. n P(wiﬁ] %’?( )2 (E’-'E q

RGN SRS S U BReR Y S s s gy fncton

L3%e have that

|”]exp(-x)1f(x)==<1/4.(1+exp(
-x))2 (1+exp(-x))(1+exp(x))
Hence, f’is (1/4)-Lipschitz. Since this function is nonnegative, Equa-
tion (12.6) holds as well.
The following claim shows that a composition of a smooth scalar function over
a linear function preserves smoothness.
claim 12.9 Let f(w) = g( N

{l, X|f+b), where g : R = R is a B-smooth function,
X

€ Rd, and b € R. Then, fis (B x 2)-smooth.
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Proof Bythechainrulewehavethat VHw) = g'( {w,x) +b)x, where g’is the

derivative of g. Using the smoothness of g and the Cauchy-Schwartz inequality
we therefore obtain

f(v) = g(

(v, x) +b)

< () () (-) Bg(w,x+b)+g'(w,x+b)vw,x+( {v-w,x) )22
s Aw)y "y =Y BI-NNN2g(,x+b)+g(w,x+b)vw,x+(vwx)?2
gfxz

Cfw,v-w) [1O+O+|v-w]2.2 -

Example 12.6

Foranyx e pgpgandde Roletfw)=( ¢, x5 _y)2 Then, fis (dIx IF

smo oth. i

- By ye{1_+,}letf(w)=log(1+exp(yv_v,x< f

ll(Al2/4)-smooth. Y ). Then,

12.2 Convex Learning Problems

Recall that in our general definition of learning (Definition 3.4 in Chapter 3), we

have a hypothesis class o
H, a set of examples Z, and a loss function " :HxZ —

R+. So far in the book we have mainly thought of Z as being the product of an

instance space and a target space, Z = X xY, and H being a set of functions from

X to Y. However, H can be an arbitrary set. Indeed, throughout this chapter,

we consider hypothesis classes 4ot are subsets of the Euclidean space Rd.

That is, every hypothesis is some real-valued vector. We shall, therefore, denote

B WtW&ﬁ e can finally define convex learning problems:
definition 12.10 (Convex Learning Problem) A learning problem, (
H,Z ),
is called convex if the hypothesis class
His a convex set and forall z € Z, the
loss function, * (
-,2), is a convex function (where, for any z, " (-,z) denotes the
function f :
H — R defined by f(w) = " (w, 2)).
Example 12.7 (Linear Regression with the Squared Loss) Recall that linear
regression is a tool for modeling the relationship between some “explanatory”
variables and some real valued outcome (see Chapter 9). The domain set
X
is a subset of Rd, for some d, and the label set
Y is the set of real numbers.
We would like to learn a linear function h : Rd
- R that best approximates
the relationship between our variables. In Chapter 9 we defined the hypothesis
class as the set of homogenous linearfurp_?tj_p[{wX 57 (w,x) wERd},

and used the squared loss function, " (h,(x,y)) = (h(x)
-y)2. However, we can
equivalently model the learning problem as a convex learning problem as follows.
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Each linear function is parameterized by a vectorw <~ Rd. Hence. we can define
H to be the set of all such parameters, namely, H = Rd. The set of examples is
Z= X xY=RdxR = Rd+1, and the loss functionis ' (w, (x,y)) = ( {w, x> -y)2.

Clearly, the set
H is a convex set. The loss function is also convex with respect

fpidsdysi gaentirseRrmiads - 2)-

Etinal2.11 "

H problem, of minimizing the empirical loss over H, is a convex optimiza-
tion problem (that is, a problem of minimizing a convex function over a convex

E%Eggu@m KGeHdd by
ERM

H(S) = argmin LS(w).
en —

H is convex, then the

ymSince,forasampleS=z,.,L11..zm,foreveryw,S(w)=mi=1(w,zi),Claim12.5impliesthatLS(w)isaconvexfi

is a problem of minimizing a convex function subject to the constraint that the
solution should be in a convex set.

Under mild conditions, such problems can be solved efficiently using generic
optimization algorithms. In particular, in Chapter 14 we will present a very
simple algorithm for minimizing convex functions.

12.2.1  Learnability of Convex Learning Problems

We have argued that for many cases, implementing the ERM rule for convex
learning problems can be done efficiently. But is convexity a sufficient condition
for the learnability of a problem?

To make the quesion more specific: In VC theory, we saw that halfspaces in d-

dimension are learnable (perhaps inefficiently). We also argued in Chapter 9
using the “discretization trick” that if the problem is of d parameters, it is
learnable with a sample complexity being a function of d. That is, for a constant d,
the problem should be learnable. So, maybe all convex learning problems over
Rd, are learnable?

Example 12.8 later shows that the answer is negative, even when d is low. Not
all convex learning problems over Rd are learnable. There is no contradiction to
VC theory since VC theory only deals with binary classification while here we
consider a wide family of problems. There is also no contradiction to the
“discretization trick” as there we assumed that the loss function is bounded and
also assumed that a representation of each parameter using a finite number of
bits suffices. As we will show later, under some additional restricting conditions
that hold in many practical scenarios, convex problems are learnable.

Example 12.8 (Nonlearnability of Linear Regression Even If d = 1) Let
H=R,
and the loss be the squared loss: " (w, (x, y)) = (wx
-v)2 (we're referring to the
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homogenous case). Let A be any deterministic algorithm.1 Assume, by way of
contradiction, that A is a successful PAC learner for this problem. That is, there

exists a function m( o ,
-,+), such that for every distribution D and for every €,0 if

A receives a training set of size m
>m(g, 0), it should output, with probability
of at least 1
-9, a hypothesis W™ = A(S), such that LD(W") — minw LD(w) < €.
Choose € =1/100,6 =1/2, letm

2m(g,d),andsetp=log(100/99)2m.Wewill
define two distributions, and will show that A is likely to fail on at least one

of them. The first distribution, i
D1, is supported on two examples, z1 = (1,0)

and z2 = (y,
-1), where the probability mass of the first example is p while the
probability mass of the second example is 1
— U. The second distribution, D2, is
supported entirely on z2.
Observe that for both distributions, the probability that all examples of the
training set will be of the second type is at least 99%. This is trivially true for

D2, whereas for D1, the probability of this event is

l

- m =e-2um=0.99.

Howgmcé we assume that A is a deterministic algonthm upon receiving a training

(0) =
set of m examples, each%f'ﬂ\}hm{‘fg)(& P1 =1), the algolFl|)'chm will output some W".
Ndolldive thvat

-1/(2u), we will set the distribution to be D1. Hence,
1(W")-minLD1(w)=-(1-u)>e.wdp
PAsYetdre (BU0R alyfithm A fails on

D1. On the other hand, if W™ > -1/(2p)
then we’ll set the distribution to be
D2.ThenwehavethatLD(W")>1/4while2
minw L

D2(w) =0, so A fails on D2. In summary, we have shown that for every
A there exists a distribution on which A fails, which implies that the problem is

not PAC learnable.

A possible solution to this problem is to add another constraint on the hypoth-
esis class. In addition to the convexity requirement, we require that H will be

bounded; namely, we assume that for some predefined scalar B, every hypothesis

& H satisfies |lw]| < B.
Boundedness and convexity alone are still not sufficient for ensuring that the
problem is learnable, as the following example demoJ\stFat S.

f
%%ﬁé?ght y more fﬁ%ﬁ?@\%é%%‘%ﬁg aﬁ@ég@t@r&rﬁ%ﬁgﬁ algorithms

samamddwwééwev@rrdﬂmﬁ'me let H={w:|w 1 Rbeabounded
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hypothesis class. It is easy to verify that H is convex. The argument will be

the same as in Example 12.8, except that now the two distributions,
D1, D2 will
be supported on z1 = (1/y,0) and z2 = (1,
-1). If the algorithm A returns

A A

YRS
-1/2 upon receiving m examples of the second type, then we will set the
distribution to be
D1 and have that
L
D(W"™)—-minL(w)=p(W " /u2L/p1D)-1D(0)=1(4u)-(1-)>e. 1w
Similarly, if W~
> -1/2 we will set the distribution to be D2 and have that
L
D2(W")-minLD2(w)=(-1/2+1)2-0>e.w
This example shows that we need additional assumptions on the learning
pasblexn|-Hprtthig frmonid Bauisteld repipsoliRiddesismoothness of the
loss function, This motivates a definition of two families of learni roblems, .
NG E ph R

H,Z,"), is called Convex-Lipschitz-Bounded, with parameters p,B if
the following holds:

« ThehypothesisclassHisaconvexsetandforallw&EHwehave||w||<B.
» Forallz€Z,thelossfunction, " (-,z),isaconvexandp-Lipschitzfunction.

Example12.10 Let

X={xERd:||x||sp}andY=R.LetH={w&ERd:
|lw|| < B}and let the loss function be * (w,(x,y)) = | {w,x> -yl. This corre-
sponds to a regression problem with the absolute-value loss, where we assume
that the instances are in a ball of radius p and we restrict the hypotheses to be
homogenous linear functions defined by a vector w whose norm is bounded by
B. Then, the resulting problem is Convex-Lipschitz-Bounded with parameters
p.B.

definition 12.13 (Convex-Smooth-Bounded Learning Problem) A learning

problem, (4 7 +) s called Convex-Smooth-Bounded, with parameters BB if

the following holds:

« ThehypothesisclassHisaconvexsetandforallw&EHwehave||w||<B.

« ForallzE&Z,thelossfunction, " (-,z),isaconvex,nonnegative,andp-smooth
function.

Note that we also required that the loss function is nonnegative. This is needed

to ensure that the loss function is self-bounded, as described in the previous
section.
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Example12.11 Let X={xERd:||x||<B/2}andY=R LetH={wE
Rd:
|lw|| < B} and let the loss function be " (w,(x,y)) = ( {w,x) -y)2. This

corresponds to a regression problem with the squared loss, where we assume that
the instances are in a ball of radius 3/2 and we restrict the hypotheses to be
homogenous linear functions defined by a vector w whose norm is bounded by B.
Then, the resulting problem is Convex-Smooth-Bounded with parameters [3,B.

We claim that these two families of learning problems are learnable. That is,
the properties of convexity, boundedness, and Lipschitzness or smoothness of the
loss function are sufficient for learnability. We will prove this claim in the next
chapters by introducing algorithms that learn these problems successfully.

Surrogate Loss Functions

As mentioned, and as we will see in the next chapters, convex problems can be
learned effficiently. However, in many cases, the natural loss function is not
convex and, in particular, implementing the ERM rule is hard.

As an example, consider the problem of learning the hypothesis class of half-
spaces with respect to the 0
-1 loss. That is,
"0-1(w, (x,y)) = 1[y=sign( 6

(w,x> )] = 1y {w,x> =0].

This loss function is not convex with respect to w and indeed, when trying to
minimize the empirical risk with respect to this loss function we might encounter
local minima (see Exercise 1). Furthermore, as discussed in Chapter 8, solving
the ERM problem with respect to the 0

to be NP-hard.

To circumvent the hardness result, one popular approach is to upper bound
the nonconvex loss function by a convex surrogate loss function. As its name
indicates, the requirements from a convex surrogate loss are as follows:

-1 loss in the unrealizable case is known

1. It should be convex.
2. It should upper bound the original loss.

For example, in the context of learning halfspaces, we can define the so-called

bi@ggégysa@.poﬂmyex surrogate for the 0

de
{yneeiwloyd=rgy . x> 1.
Clearly, for all w and all (x,y), " 0-1(w,(x,y))

< "hinge(w,(x,y)). In addition,
the convexity of the hinge loss follows directly from Claim 12.5. Hence, the hinge
Igss satisfies the requirements of a convex surrogate loss function for the zero-

loss. An illustration of the functions *0-1 and " hinge is given in the following,.
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hinge *e

*
*

1 Yw, x)

Once we have defined the surrogate convex loss, we can learn the problem with
respect to it. The generalization requirement from a hinge loss learner will have
the form
Lhinge
BAES))<minLhinge(w)+e,w

where Lhinge

D(w)=Ex,y D[ hinge((w,(x,y))].Usingthesurrogateproperty,we
can lower bound the left-hand side by LO-1
D (A(S)),whichyields
LO-1
BAES))<minLhinge(w)+e.w

We can further rewrite the upper bou

(ndasfollows:)LO-1(A(S))<minLO-1(wLhingew-L0-1D)+min()min(w)+e.wEHDDWEHWEHD
Thatis, the 0 -1 error of the learned predictor is upper bounded by three terms:
«Approximationerror:Thisisthetermmin LO-1w&HD(w),whichmeasureshow
well the hypothesis class performs on the distribution. We already elabo-
rated on this error term in Chapter 5.
« Estimation error: This is the error that results from the fact that we only
receive a training set and do not
elaborated on this error term

(observethedistributionD.WealreadyinChapter5.)«Optimizationerror: ThisisthetermminLhingew—L0-
to the surrogate loss and the approximation error with respect to the orig-
inal loss. The optimization error is a result of our inability to minimize the
training loss with respect to the original loss. The size of this error depends
on the specific distribution of the data and on the specific surrogate loss
we are using.

12.4 Summary

We introduced two families of learning problems: convex-Lipschitz-bounded and
convex-smooth-bounded. In the next two chapters we will describe two generic
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learning algorithms for these families. We also introduced the notion of convex
surrogate loss function, which enables us also to utilize the convex machinery for
nonconvex problems.

Bibliographic Remarks

There are several excellent books on convex analysis and optimization (Boyd &
Vandenberghe 2004, Borwein & Lewis 2006, Bertsekas 1999, Hiriart-Urruty &
Lemaré ' chal1996).Regardinglearningproblems,thefamilyofconvex-Lipschitz-
bounded problems was first studied by Zinkevich (2003) in the context of online
learning and by Shalev-Shwartz, Shamir, Sridharan & Srebro (2009) in the con-
text of PAC learning.

Exercises

1. Construct an example showing that the O ~1 loss function may suffer from

local minima; namely, construct a training sample S
€ X x {£1}hm (say, for
X =R2), for which there exist a vector w and some € > 0 such that
1. For any w' such that
loss here isthe O
-1 loss). This means that w is a local minimum of LS.
2. There exists some w * such that L w* S() < LS(w). This means that w is

not a global minimum of LS.
2. Consider the learning problem of logistic regression: Let

|[w-w'||cewehavelLS(w)sL w'S()(wherethe

H=X={x¢&
Rd:
[|x]] < B}, for some scalar B> 0O, let Y ={+1}, and let the loss
function * be defined as * (w,(x,y)) = log(1 + exp(
-y {w,x? )). Show that
the resulting learning problem is both convex-Lipschitz-bounded and convex-
smooth-bounded. Specify the parameters of Lipschitzness and smoothness.
3. Consider the problem of learning halfspaces with the hinge loss. We limit our
domain to the Euclidean ball with radius R. Thats, _ {x : Ixll2 < R}.
The label set is
Y ={+1}and the loss function " is defined by " (w, (x, y)) =
max
{0,1-y {w,x> }.We already know that the loss function is convex. Show
that it is R-Lipschitz.
4. (*) Convex-Lipschitz-Boundedness Is Not Sufficient for Computa-
tional Efficiency: In the next chapter we show that from the statistical
perspective, all convex-Lipschitz-bounded problems are learnable (in the ag-
nostic PAC model). However, our main motivation to learn such problems
resulted from the computational perspective — convex optimization is often
efficiently solvable. Yet the goal of this exercise is to show that convexity
alone is not sufficient for efficiency. We show that even for the case d =1,
there is a convex-Lipschitz-bounded problem which cannot be learned by any
computable learner.
Let the hypothesis class be
H =1[0,1] and let the example domain, Z, be




